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ABSTRACT
This paper summarizes our approach to the BAIDU KDD CUP 2022

Spatial Dynamic Wind Power Forecasting. With a data set of 245

days of historical 10-minute data for a park of 134 turbines, wind

power was forecast over two days. The model combines a Recurrent

Neural Networks Model with more classical time series forecasting

approaches based on K-Nearest Neighbors (KNN) models.

The link to download the code corresponding to the paper can

be found at GitHub:

https://github.com/ManuelAngel99/KDD_CUP_2022

KEYWORDS
Neural networks, wind power forecasting, time series, KDD Cup,

GRU, KNN, ARIMA, prophet, deep learning

1 INTRODUCTION
Solar and Wind are sources of renewable energy that have high

production variability. In order to accurately match electricity pro-

duction and consumption, future power production prediction is

critical, especially when wanting to introduce a high amount of

these power sources into a country’s electric grid.

In recent years, time series forecasting, based on data mining and

machine learning, has provided diverse solutions to the problem of

forecasting electricity demand and power production. In particular,

Wind Power Forecasting (WPF) aims to accurately estimate the

wind power supply of a wind farm given its historical data, it is

considered one of themost critical issues forwind power integration

and operation.

The 2022 KDD Cup challenge proposed a WPF challenge, pro-

viding the Spatial Dynamic Wind Power Forecasting dataset from

Longyuan Power Group Corp. Ltd. This included the spatial distri-

bution of wind turbines as well as more than 8 months of historical

10-minute data for 134 wind turbines, including power production,

wind speed, direction, temperature, and other turbine internal sta-

tus variables. The challenge consisted in predicting future power

for a two-day interval (or 288 10-minute periods) for each of the
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134 turbines with minimum RMSE and MAE. A full description of

the data set and challenge can be found in [1].

2 SOLUTION OVERVIEW
The WPF field has been thoroughly studied over the past decades,

and we will not propose here an exhaustive bibliographic study,

which can be found in [1], [2], [3], and [4]. We will instead center

our bibliographical citations on the papers and models that inspired

our concrete solution for this particular dataset throughout the

following sections.

2.1 Data exploration and pre-processing
The variables provided in the dataset were the following:

Variable Name Specification

TurbID Wind Turbine ID

Day Date of the record

Tmstamp Created time of the record

Wspd (m/s) The wind speed recorded by the anemometer

Wdir (°) Angle between wind direction and turbine nacelle

Etmp (℃) Temperature of the surrounding environment

Itmp (℃) Temperature inside the turbine nacelle

Ndir (°) Nacelle direction, i.e., the yaw angle of the nacelle

Pab1/2/3 (°) Pitch angle of blade 1/2/3

Prtv (kW) Reactive power

Patv (kW) Active power (target variable)

With more than eight months of 10-minute data for all of the

above variables, a 2-day prediction of the target variable Patv was

to be calculated.

As seen in figure 1, the highest correlation for the Patv variable

is found between wind speed and Patv, therefore, the possibility of

utilizing wind predictions was deemed tempting for longer-term

power prediction, this matches bibliographical source’s interest, as

seen in [5] and [6]. However, competition rules impeded utilizing

external data sources such as plant localization.

NaN values represent 1,05% of all rows in the data set, however,

when considering "invalid" values (as defined in [1]) the total num-

ber is raised to approximately 30%, this is especially significant

https://github.com/ManuelAngel99/KDD_CUP_2022
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as these invalid values are often grouped for specific turbines and

periods of time.

This large amount of invalid values can be attributed to the

fact that data collection is from a real wind turbine plant, this

implies a challenge when creating models but ensures the models

resulting from the competition would be applicable for this real-

world scenario.

Figure 1: Correlation matrix for the different dataset vari-
ables

Data pre-processing was explicitly tested for each model, as

described in 4, this resulted in different techniques being applied to

each model. Classic time series feature engineering methods were

used to encode time and nacelle direction with sines and cosines,

variables were normalized with Min-Max scaler or StandardNormal

scaler, and NaN and invalid values were filled with a range of

methods (forward filled, zeros...).

A distribution of median Patv values grouped by timestamp is

shown in figure 2 for the full dataset, a clear tendency is identified

for different times of day.

2.2 Challenges
The main challenges faced by the team in order to resolve the

proposed problem include:

• Fitting models to predict short-term and long-term predic-

tions: the prediction horizon extended to predict up to 288-

time ticks. Model performance varies greatly between short-

term and long-term predictions for different models, this is

a common wind forecasting problem, as explained in [7].

• The forecast was evaluated on a per turbine basis, while

creating per-turbine models was often discarded due to limi-

tations on execution time and model size introduced by the

competition organizers.

• A large number of NaN and invalid data points created a

challenge when training models with low bias, these would

over-fit easily on the training set.

• Offline model validation transfer to online execution was

poor, even though many evaluations were performed on the

80-day validation set, as described in 4. This is attributed to:

– Large data variability depending on wind conditions be-

tween more turbulent/calm periods that are difficult to

predict.

– When evaluating, a large number of invalid data points

are eliminated for the final online result calculation, this

removal of data can result in large periods of invalid data as

can be seen in the training set. Also, in the online execution

only a few samples were evaluated in the test period (143

samples in phase 3).

Figure 2: Median values Patv values grouped by Timestep

3 DETAILED METHOD
Our proposed recurrent neural network models were inspired by

the solution given as a baseline, the model known as "PaddleSpatial

WPF Baseline GRU" provided by the organizers. This model was

transferred to the PyTorch framework in order to optimize exe-

cution times and combined with classical time series forecasting

models based on KNN.

Model ensembles were created by analyzing errors committed

for different parameters (for different prediction time horizons,

different turbID and combinations) and then picking the model

with less error in each prediction. The experiments performed will

be further explained in 4.

3.1 Recurrent Neural Network model: Baseline
method paddlepaddle to PyTorch (GRU)

As the paddlepaddle framework is similar to PyTorch and oppor-

tunities for improvement were identified both from a modeling

and computational efficiency perspective, a model inspired by the

competition baseline was written in PyTorch.

The most remarkable differences between both models are: our

PyTorch model utilizes a single model for the 134 turbines (we

obtained a better score and, obviously, a shorter execution time) ; a

higher dropout and higher batch size.
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Figure 3: Diagram of the GRU model.

3.2 Traditional time series forecasting models
and K-nearest neighbors

Low data quality in the sense of a large percentage of NaN and

invalid data points lead models to over-fit quickly, producing a

high error for longer-term predictions. This led the team to explore

more classic and simpler models to reduce errors in long-term

predictions.

Various kinds of classic time series prediction model variations

were tested: simple mean and median models per timestamp (see

figure 2) and TurbID, ARIMA models, different Wavelets transform

models, Fourier transform models, exponential smoothing models

and KNN models.

Some examples of these can be seen in figure 4. This image was

created with the Weights and Biases API, see section 4.1 for more

details :

• The daily median model (seen in green) simply predicts the

historic median of the training set (see figure 2 - although

this figure encompasses the full train set’s median, the model

shown above in 4 removes the last 80 days for internal testing,

as described in 4.1)

• The KNN model (in blue) is described below.

• WAVE (orange) model uses Symlet 8 wavelets, from ([8]).

• HAAR (purple) model uses Haar wavelets, from ([8]).

As mentioned in the first paragraph, and as it can be appreciated

in figure 4, simpler models appeared more robust for longer-term

predictions (simple green median model) in our offline testing set-

up both for RMSE and MAE. However, the translation of these

positive results to the final online score was not always achieved,

particularly due to an increase in the measured standard deviation

of scores, as described in 4.1, which implies a higher model variance.

Out of all classical models tested, the best competition score

results were obtained by time-series KNN models in both offline

and online testing.

The applied KNN model is similar to those described in [9]:

(1) The last 𝐿𝐵 data points are compared to historical sequences

of length 𝐿𝐵

(2) By measuring the distance using different measures, the

closest K neighbors are chosen

(3) For each neighbor, the next LF timesteps are saved

(4) A prediction of length LF is produced by computing aweighted

average for each neighbor’s distance, to produce the final

results.

Weighting introduced for each neighbor was inversely propor-

tional to its distance (L) to the considered sequence, with a
1

1+𝐿
weight being considered.

Different distances, LB and LF lengths and K numbers were

tested, and hyperparameter tuning and selection are described in

section 4.3.

Figure 4: Comparison of various classic time series forecast-
ing models tested and their mean RMSE error by horizon.

3.3 PyTorch GRU models for different horizons:
1 hour, 3 hours, 10 hours, and 48 hours

The model from section has been considered for different horizons.

A summary of the neural network model (GRU) applied is explained

below:

Hyperparameters:

(1) input_length: 144

(2) output_length: 288

(3) inputs: ["Wspd", "Wdir", "Etmp", "Itmp", "Ndir", "Pab1", "Pab2",

"Pab3", "Prtv", "Patv"]

(4) targets: ["Patv"]

(5) lstm_layer: 2

(6) dropout: 0.3

(7) train_epochs: 5

(8) train_batch_size: 256

(9) val_batch_size: 512

(10) lr: 1e-4

Model:

BaselineGruModel(
(dropout): Dropout(p=0.3, inplace=False)
(lstm): GRU(10, 48, num_layers=2, batch_first=True)
(projection): Linear(in_features=48,out_features=1,bias=True)
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)

22.8 K Trainable params
0 Non-trainable params
22.8 K Total params
0.091 Total estimated model params size (MB)

Figure 5: Diagram of team workflow and development sand-
box.

4 EXPERIMENT PARTS
4.1 Offline testing methodology
As described in section 2.2, offline testing to validate which model

to upload to the competition webpage was challenging. Different

testing strategies were put in place by the team, finally the Weights

And Biases API (see [10]) was deemed the best solution for collabo-

ration and offline model comparison.

The last 80 days of the train set were used as internal offline

testing for our models, i.e., the interval of days encompassing days

[166, 245] was separated when training models and a final model

train, including the whole train set, was performed before the final

model upload to the competition web page.

The evaluation script was used to evaluate 2,048 predictions

over these 80 days, these predictions were then averaged and the

results uploaded to the weights and biases API, where different

error metrics were calculated and compared for each model, mainly:

competition score (according to [1]), RMSE and MAE committed

per turbine and RMSE and MAE per time horizon for each of the

288 predictions.

The standard deviation of these errors was also calculated, this

measure proved to be an essential measure to consider. As described

in section 2.2, model transfer from offline to online scoring was

not very good. The team found a good result in both the model’s

offline score and the standard deviation of the 2,048 model scores

indicated a better online performance than considering the model

score alone.

Error metrics per TurbID and per time horizon enabled easy

model ensemble creation. However, due to the high number of

invalid values (not considered in the evaluation) and high data

variability of the training, validation and testing sets, the team

found that better results in these graphical comparisons often did

not necessarily result in better online model performance when

ensembling the models.

4.2 Recurrent neural network tests
For the GRU model described in section 3.3, a cross-validation

strategy with 5 kfolds was employed over the [1, 165] day interval.

After these, final offline tests were performed as described in section

3.3.

The following table shows the partitioning of the 5 kfolds:

Kfold Number Train Validation
1 [34,165] [1,33]

2 [1,33],[67,165] [34,66]

3 [1,66],[100,165] [67,99]

4 [1,99],[133,165] [100,132]

5 [1,132] [133,165]

Over the test period, we randomly selected several starting points.

We considered 2,048 test sets (test_x and test_y with the nomen-

clature of the BAIDU KDD 2022 competition). This allows us a

trade-off between computational time and the reliability of the er-

ror metric. For the train period, we have considered all possible

predictions shifted every 10 minutes.

For example, the first and last five test subsets are presented

below:

Nº test Maximum Day Maximum Tmstamp

1 180 0:00

2 180 0:10

3 180 0:40

4 180 0:50

5 180 11:40

... ... ...

2,044 242 6:50

2,045 242 7:00

2,046 242 7:50

2,047 242 8:20

2,048 242 9:20

In addition, the test scheme was replicated, as done in the web

page, i.e., with a history of only 14 days made available prior to

each prediction.

Evaluation score

The following table shows the scores of the GRU model in Py-

Torch for each kfold and the mean of the kfold in phase 2:

Model Offline score Online score

KFOLD 1 -43.409 -44.92653
KFOLD 2 -43.413 -44.94513

KFOLD 3 -43.141 -45.06132

KFOLD 4 -43.164 -45.29073

KFOLD 5 -42.987 -45.48204

MEAN KFOLD -43.41 -44.98518
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One of the conclusions from the scores of each of the kfolds is

that the Online score is strongly dependent on the period of days

considered (within the 245 days). Also, note the deviation from this

using the same model. Note that the offline score is more robust as

it has more test sets (2,048 vs. 219).

The table below shows the score of the best models in phase 3:

Nº Model Offline score Online score

1 MEAN KFOLD -43.41 -46.20274

2 MEAN KFOLD + GRU288 - -46.04143

3 Model 2 + Haar (nlevels=4) - -46.05027

4 GRU288 MAX KFOLD -43.708 -45.76524

5

FINAL (HYBRID) MODEL.

GRU288, GRU60, GRU18,

GRU6 MAX KFOLD

and KNN

43.883 -45.56335

4.3 KNN experimental test
KNN hyper-parameters were also chosen by the validation method

described in section 4.1 .

The full KNN model description is included in section 3.2.

KNN models were tested separately by performing neighbor

search on the whole train set and only on the 14 days previous to

each prediction, the later producing worse results.

The different hyper-parameter tests performed included (value

retained in bold type):

• Distances: Euclidean, cosine,
• LB: 2, 6, 12, 15, 30, 144
• k neighbor number: 30, 60,100, 150, 300, 500, 1500, 2000

Figure 6: MEAN RMSE for different KNN models per predic-
tion horizon.

In Figure 6, different k-neighbor number models are compared

per prediction time horizon for an LB of 2 and 6 and the euclidean

distance. The 𝑘 = 1500 model has the least RMSE error of all 𝐿𝐵 = 2

models and by changing LB to 6 (1 hour) the error can be seen to

decrease further. The tests in the figure were performed offline with

only 300 evaluations (compared to the full set of 2,048 evaluations

described in 4.1 ) for rapid testing. This figure was made with the

Weights and Biases API as discussed in section 4.1.

4.4 Visual comparison between models (test
samples)

The predictions of the different models (GRU288, KNN, GRU60,

GRU18, GRU6, hybrid model) for one turbine are shown below:

Figure 7: Comparison forecasting for TurbID=7 and Sam-
ple=1. 288 horizons.

Figure 8: Comparison forecasting for TurbID=7 and Sam-
ple=1. 60 horizons.

5 FINAL MODEL. HYBRID MODEL (KNN AND
GRU)

The methodology described in section 4.1 enabled model compari-

son in order to create the best offline ensemble models, these models

were then uploaded to the competition web page to study their on-

line performance.

The final prediction with the best online score is obtained as

indicated in the following lines.

(1) (𝑦𝐺𝑅𝑈 288

1
, ..., 𝑦𝐺𝑅𝑈 288

288
) the vector of predictions resulting

from taking the maximum for each component of the vector

for each kfold from GRU model horizon=288
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(2) (𝑦𝐺𝑅𝑈 60

1
, ..., 𝑦𝐺𝑅𝑈 60

60
)the vector of predictions resulting from

taking the maximum for each component of the vector for

each kfold from GRU model horizon=60

(3) (𝑦𝐺𝑅𝑈 18

1
, ..., 𝑦𝐺𝑅𝑈 18

18
) the vector of predictions resulting from

taking the maximum for each component of the vector for

each kfold form GRU model for horizon=1

(4) (𝑦𝐺𝑅𝑈 6

1
, ..., 𝑦𝐺𝑅𝑈 6

6
) the vector of predictions resulting from

taking the maximum for each component of the vector for

each kfold form GRU model for horizon= 6

(5) (𝑦𝐾𝑁𝑁 288

1
, ..., 𝑦𝐾𝑁𝑁 288) the vector of predictions resulting

from KNN model (view table for optimal parameters).

(6) (𝑦𝑚𝑎𝑥 (𝐺𝑅𝑈 288,𝐾𝑁𝑁 288)
1

, ..., 𝑦𝑚𝑎𝑥 (𝐺𝑅𝑈 288,𝐾𝑁𝑁 288) ) the max

vector obtained from (1) and (5)

The final model (hybrid model) is obtained by the following vector(
𝑦𝐺𝑅𝑈 6

1
, ..., 𝑦𝐺𝑅𝑈 6

6
, 𝑦𝐺𝑅𝑈 18

7
, ..., 𝑦𝐺𝑅𝑈 18

18
, 𝑦𝐺𝑅𝑈 60

19
, ...,

𝑦𝐺𝑅𝑈 60

60
, 𝑦
𝑚𝑎𝑥 (𝐺𝑅𝑈 288,𝐾𝑁𝑁 288)
61

, ..., 𝑦
𝑚𝑎𝑥 (𝐺𝑅𝑈 288,𝐾𝑁𝑁 288)
288

)

The plot below shows the different scores per TurbID:

Figure 9: Score by TurbID. hybrid model

6 CONCLUSIONS
This paper presents the procedure applied by our team to resolve

the challenge of the Baidu KDD cup 2022.

The competition has been particularly challenging regarding

data quality: missing, invalid and outlier values have been common

as the provided data set is formed by real data from a wind turbine

park. In particular, invalid data values encompass up to 30% of the

training set. This has meant that model learning and translation

between different test sets has been inconsistent.

With this in mind, the team developed a full internal testing

methodology based on the Weights and Biases API that created

more reliable and faster internal predictions, as well as facilitating

model comparisons for better model ensemble creation.

The result from this methodology is our final hybrid model, that

combines models with more traditional and simple methods (KNN)

with more complex methods (GRU recurrent neural networks) as

well as models optimized for different horizons and custom models.
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