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ABSTRACT
This paper summarizes technical details of the machine-learning
forecasts of wind power of 134 turbines using a unique Spatial
DynamicWind Power Forecasting dataset. Themethod of k-nearest-
neighbor was applied to interpolate themissing values. The baseline
gate recurrent unit model was selected as the predictor because of
its moderate complexity and acceptable performance. To reduce
computational time, we selected six typical turbines from the 134
turbines for hyperparameter optimization by the method of grid
search. The suboptimum hyperparameters were applied to estimate
wind power supply of all turbines. The codes of this work can be
found at https://github.com/LiuZhihhxx/KDD2022.
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1 INTRODUCTION
Wind Power Forecasting (WPF) is at the heart of minimizing the
uncertainty of the integration of wind power plants into the grid [1],
including reserves allocation, the scheduling of conventional power
plants, and the optimization of the electricity value in the mar-
ket. Although various methods are avaliable such as conventional
regression-based methods[2, 3, 5], machine learning[8, 10, 11], deep
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learning methods[6, 7, 9], and hybrids of these methods[4, 12], WPF
with high accuracy an precision is still a great challenge.

To meet this challenge, Baidu KDD CUP 2022 launched the task
of Spatial Dynamic Wind Power Forercasting (SDWPF)[13], a task
that required all teams to accurately estimate thewind power supply
of a wind farm. The organizer provided a unique SDWPF dataset,
which has two features differing from previous WPF competition
settings:

1) involving the spatial distribution of all wind turbines.
2) providing important weather data and turbine internal con-

texts.
Specifically, this task required that each team must estimate the

wind power supplied by each turbine and the total power of the 134-
turbine wind farm. The forecast should be 10-min time resolution
with a 2-day forecast horizon.

2 SOLUTION OVERVIEW

Figure 1: Abnormal/missing value proportion of each turbine.

We used a 3-step solution approach to accomplishing the compe-
tition task: data cleaning, hyperparameter optimization, and mod-
eling.
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The original dataset is incomplete in missing data and contains
some abnormal values having no physical meaning (Fig. 1). The
missing data were estimated by an interpolation algorithm, and the
abnormal values were set to zeros as required by the competition
document.

Considering the problem scale and the computational efficiency,
we decided to use the baseline Gate Recurrent Unit (GRU) model
for predicting the wind power supply. The recorded data of six
typical turbines were used as the validation set for optimizing the
hyperparameters by a grid search strategy.

3 DETAILED METHOD
3.1 Data cleaning
As shown in Fig. 1, the missing and abnormal data account for a
large proportion of the dataset. To facilitate the forecasting, we used
the method of k-nearest-neighbor (kNN) to interpolate the missing
values[3]. The kNN interpolation identifies neighboring points by
distance measurements and can use the full value of neighboring
observations to estimate missing values. The number of neighbors
k is an essential parameter in the kNN algorithm. A large k tends
to fill the missing value with the mean value of the entire dataset,
and a small k may introduce noise neighbors. In our computation,
ten nearest neighbor values were used in the kNN interpolation.

3.2 Model
The baseline GRU model [3] was used because it is moderately com-
plex and performs quite well in solving time-series problems. GRUs
use a single gating unit to simultaneously control the forgetting
factor and the decision to update the state unit. For the competition
task, we used the cleaned data for constructing 134 GRU models
with the same structure.

PaddlePaddle provides many APIs for organizing and training
any kind of deep learning model. For example, the GRU model is
included in paddle.nn, an API including different network models.
In the PaddlePaddle framework, data are almost treated as tensors,
and the paddle.tensor API offers functions related to tensor compu-
tations. The data flow in the network is as follows: the data is first
transformed into a tensor that fits the dimensions of the model, and
then flows through a GRU layer(s), a dropout layer, and a linear
layer, resulting in a one-dimensional vector output of length 288.

Learning rate is so adjusted that the learning rate declines as the
epoch increases, allowing the loss function to decrease fast at the
early stage of the training while avoiding divergence at the later
stage. Additionally, an early-stopping strategy was applied to avoid
overfitting. The Adam optimizer included in the paddle.optimizer
was used for training the GRU model.

3.3 Hyperparameter optimization
Six typical turbines were selected for optimizing the model hyper-
parameters. Fig. 2 indicates the locations of the selected turbines
(labeled in red). Though the choice is somewhat random, the se-
lected turbines are evenly distributed in the wind farm so that these
turbines could be representative of the overall situation. The evalu-
ation script was modified to evaluate the partially selected models
based on the officially offered test-1 data. The prep_env() method in

prepare.py was also rewritten to allow tuning the hyperparameters
by the grid search method.

Figure 2: Locations of the selected turbines for hyperparam-
eter optimization.

4 EXPERIMENT PARTS
In practice, the kNNImputer method included in the Python scikit-
learn library was used to realize kNN interpolation. The number of
neighbors was set as 10, and the Euclidean distance was calculated
as the standard distance between objects. The processed dataset
was saved as a CSV table named wtdata_245days_knned and used
to train the 134 models.

We selected six turbines (17, 30, 63, 74, 107, and 121) to build
the model and generate the grid search. These turbines are evenly
distributed in location throughout the wind farm and represent the
overall pattern to some extent.

The optimized hyperparameters include batch size, learning rate,
number of GRU layers, and input length. In the grid search, the
candidate values of the four hyperparameters are: input length=[72,
144, 288], number of layers=[1, 2, 3], batch size=[16, 32, 64], and
learning rate=[1e-4, 5e-4]. The evaluation results based on the
validation data is shown in Table 1. The best combination is [144, 2,
5e-4, 64], which results in a score of -0.9411.

Note that there are several hyperparameter combinations result-
ing in a lower score than that of the selected combination [144, 2,
5e-4, 64]. This is because these combinations lead to non-converging
models and hence yield NaN prediction values, which should be
excluded. In the predict script, we replaced the NaN value with zero
so that warning messages could be seen in the evaluation output.
In detail, small batch size and large learning rate are more likely to
lead to non-convergence models. Although the best hyperparam-
eters worked well on the released test data, there are 196 pairs of
data_x and data_y on the server, leading to different overall results.
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