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ABSTRACT
Wind power forecasting (WPF) is crucial for planning a power
system with wind power integration; hence, it has received much
attention recently. In WPF, spatial and temporal correlations signifi-
cantly impact the forecasting performance. However, most existing
WPF methods only focus on modeling spatial proximity relation
while overlooking the multi-relational spatio-temporal dependence.
Moreover, existing ensemble strategies used in WPF ignore the
difference between sub-modules. To address these issues, this pa-
per proposes a novel WPF method, called FDSTT. FDSTT consists
of a multi-relational graph constructor module, a multi-relational
graphs-based deep spatio-temporal module, a spatio-partitioned-
time-phased tree module and a data-driven ensemble module. In the
KDD Cup 2022 of Wind power prediction, the proposed FDSTT has
win the 1st in the final Phase and 2nd in Phase 2. Furthermore, we
has win 3rd place in Phase 1 with the primary version of FDSTT.
Those results confirm that FDSTT can achieve consistently superior
performance on different test datasets.
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1 INTRODUCTION
Wind energy, an important energy alternative of fossil fuel, plays
an important role in energy conservation and emission reduction.
However, integrating wind power in a power system is challeng-
ing. This is because, the wind power supply is stochastic, and the
stochastic character of wind power frustrates the planning and
operation of the power system. To properly plan and operate the
power system, estimating the wind power supply at different time
scales, namely power forecasting (WPF), is important. With the
WPF results, power grid dispatchers can adjust the dispatching plan
in time, which improves the peak shaving capacity and reduces the
tuning reserve capacity.

Recently, deep learning-based WPF methods have achieved su-
perior performance. Existing deep learning-based WPF methods
can be divided into two categories: time series forecasting-based
methods and spatio-temporal model-based methods. Time series
forecasting-based methods regard WPF as a time series forecasting
problem, and adopt RNN-based [5, 14, 21] or transformer-based
model [19] to complete forecasting. Unfortunately, this kind of
method ignores the spatial information of wind farms. Correspond-
ingly, spatio-temporal model-based methods fill this gap by means
of graph neural networks, such as STGNN [20], DCRNN [15], Graph
Wavenet [2]. However, those spatio-temporal model-based methods
mostly focus on the short-term forecasting task while struggling
under the long-term setting. Thus they do not fit our problem since
our time scale in WPF is a long-term situation. Summarily, existing
learning-based WPF methods have two following challenges.
Challenge I: How to capture multi-relational spatio-temporal de-
pendence between wind turbines? Most existing models only utilize
a single relation between turbines (e.g., Euclidean distance) to con-
struct the adjacency graph, which ignores the complicated relation
between nodes. For example, a wind turbine may be affected by
both nearby and distant wind turbine statues due to geographical
influences and temporal similarity influences, respectively.
Challenge II: How to ensemble models to fit variable data distri-
butions? Most ensemble strategies ensemble the models statically.
Nevertheless, the fixed ensemble strategy may be suitable for a
special data distribution while performs poor in other data distri-
butions. Therefore, a flexible ensemble strategy to adapt different
data distribution is needed.
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To tackle the above challenges, we present a novel WPF method,
called FDSTT. To handle the first challenge, FDSTT embeds a multi-
relation graph constructor in the deep spatio-temporal module.
This constructor simultaneously constructs the spatial-aware graph
and semantic-aware graph, which can capture both the local and
global contextual information. To overcome the second challenge,
FDSTT dynamically adjusts the model structure according to the
data distributions as different models may be good at handling
different data distributions, which enables our model to be relative
optimal for different situations. Moreover, FDSTT integrates a tree-
based model to further enhance the prediction performance.

The proposed FDSTT has win the 1st place in the Phase 3 of
the Baidu KDD CUP 2022 of WPF, which solves a real-world wind
power forecasting problem: estimating the wind power supply of a
wind farm in 2 days without wind speed forecasting data. In this
competition, a unique spatial dynamic wind power forecasting (SD-
WPF) dataset is provided, which includes the spatial distribution of
wind turbines, as well as the dynamic context factors like tempera-
ture, weather, and turbine internal status[23]. When evaluated on
this dataset, our ensemble model FDSTT consistently outperforms
other competing models online.

Overall, our contributions are summarized as follows:
• We propose an ensemble framework for long-term wind

power forecasting, including a DeepMulti-relational Spatio-
Temporal (DMST) module to effectively capture spatio-
temporal correlations, a Spatio-partitioned Time-phased
Tree (ST-Tree) module to improve prediction robustness,
and a ensemble module to integrate the prediction signals
between modules.

• We present a multi-relational graph constructor to capture
the multi-relational dependencies among wind turbines.
Based on this, the downstream models are able to leverage
both the local and global contextual information.

• We design a data-driven ensemble strategy, which can dy-
namically adjust the ensemble architecture to fit the input
distribution.

• In the KDD Cup 2022 of WPF, the proposed FDSTT has win
the 1st place in the final Phase. Furthermore, FDSTT and
its primary version have won 2nd and 3rd place in Phase
2 and Phase 1, respectively. Note that, FDSTT is the only
solution that remains in the top three during all phases.

2 PROBLEM FORMULATION
In this section, we formally define Turbine Time Series and Spatial
Correlation Graph in Definitions 1 and 2, respectively. Then, we
provide a formal statement of the Spatial Dynamic Wind Power
Forecasting problem.

Definition 1. (Turbine Time Series) Suppose there are N wind
turbines, each of which generates time series 𝑥𝑖 ∈ R𝑇×𝐷 , where i is the
turbine id, T is the number of timestamps, and D denotes the number
of features. 𝑿 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } ∈ R𝑁×𝑇×𝐷 represents multivariate
time series generated by all turbines. Additionally, we denote 𝑥𝑡

𝑖
∈ R𝐷

the status of turbine i at timestamp t.

The wind power generated by each turbine depends not only
itself status but also adjacent turbine’s. Hence, we use a graph to
capture the spatial correlation, as defined below.

Definition 2. (Spatial Correlation Graph) A graph G =

(𝑉 , 𝐸) is used to capture the spatial correlation, whereV = {𝑣𝑖 }𝑁𝑖=1 ( |V| =
𝑁 ) is a set of vertices (i.e., wind turbines) and 𝐸 is the edge set. An
edge 𝑒𝑖, 𝑗 is associated with a spatial distance from 𝑣𝑖 to 𝑣 𝑗 .

Note that, the graph can also be denoted as an adjacent matrix
𝐴 ∈ R𝑁×𝑁 to capture the spatial correlation.
Problem Statement. The wind power forecasting problem is to
predict the future wind power generation. Let 𝑿𝑡 ∈ R𝑁×𝐷 be
the history turbine statues observed at timestamp 𝑡 . Following
previous multivariate time series forecasting prediction solutions,
we formulate the problem as learning a function F𝜃 to forecast the
next 𝜏 steps data based on the past 𝑇 steps historical data:{

𝒀̂
𝑡+1
, 𝒀̂

𝑡+2
, . . . , 𝒀̂

𝑡+𝜏 }
= F𝜽

(
𝑿𝑡 ,𝑿𝑡−1, . . . ,𝑿𝑡−𝑇+1; G

)
(1)

Here, 𝒀̂ 𝑡 ∈ R𝑁×1 denotes the predicted wind power for all turbines
at timestamp 𝑡 , and G = (𝑉 , 𝐸) represents spatial adjacent matrix.

3 THE PROPOSED APPROACH
3.1 Overview
The overall framework of FDSTT is illustrated in Figure 1. It con-
sists of four modules: (1) Multi-relational Graph Constructor, (2)
DMST module, (3) ST-Tree module, (4) Ensemble module. Specifi-
cally, (1) the Multi-relational Graph Constructor generates multi-
relational graphs for spatio-temporal information aggregation; (2)
the DMST module aggregates the spatial information and captures
temporal patterns in an Encoder-Decoder form; (3) the ST-Tree
module extracts partition features, and makes predictions for each
time segment to improve the accuracy and robustness; (4) the En-
semble module dynamically fuses the output of each module in a
data-driven ensemble strategy. The details of these modules are
introduced in the following subsections.

3.2 Multi-relational Graph Constructor
As discussed in Challenge I, the spatio-temporal dependence of
wind power is highly correlated with the complicated relations
between turbines. In view of this, we present the multi-relational
graph constructor to extract multi-view graph information among
turbines for subsequent spatio-temporal deep learning.

3.2.1 Spatial-aware Graph. The spatial correlation between wind
turbines will effectively improve the prediction efficiency. Thus, we
first build a spatial-aware graph 𝐺𝑑 to capture the explicit neigh-
boring relations in a local view. To obtain the 𝐺𝑑 , we calculate the
Euclidean distance between two nodes to get the spatial distance
matrix, then take the 𝑡𝑜𝑝 − 𝐾 nearest nodes as the neighbors of
node 𝑖 , denoted as 𝑁 (𝑖). Hence, 𝐺𝑑 is formulated below:

𝐴(𝑖, 𝑗) =
{

1, 𝑗 ∈ 𝑁 (𝑖)
0, 𝑗 ∉ 𝑁 (𝑖)

(2)

3.2.2 Semantic-aware Graph. Although spatial neighbors can be
used to capture the local scope effects, they are limited since the
environments can also vary over short distances. As an example,
one turbine on the back slope and the other one on the windward
slope, in this case their acceptable wind direction is opposite but the

2
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Figure 1: The overall architecture of FDSTT. Multi-relational Graph Constructor uses input turbine series to generate the
graphs. The encoder in DMST utilizes the generated graphs, turbine id embedding and original turbine series to aggregate the
spatio-temporal information, then predicts the wind power in decoder autoregressively. ST-Tree module predicts short-term
future power for each partition. Finally, Ensemble module dynamically fuses the output of DMST and ST-Tree as the prediction.

relative distance between them is small. To this end, we further con-
struct a semantic-aware graph 𝐺𝑠 , to capture the similar temporal
pattern between turbines in a global view. In this term, we propose
the differential similarity rather than directly calculations of the
similarity over origin sequences. The differential similarity can be
explicitly captured via the similarities between sequence variation
patterns, while the global semantic neighbors can be integrated to
break through the local shackles. Let 𝑥𝑖,𝑤 ∈ R𝑇×1 represent the
wind speed sequence of turbine 𝑖 , we can calculate the differential
similarity as follows:

𝑆𝑖𝑚(𝑖, 𝑗) =
𝑇∑︁
𝑡=1

(
(𝑥𝑡𝑖,𝑤 − 𝑥𝑡−1

𝑖,𝑤 ) · (𝑥𝑡𝑗,𝑤 − 𝑥𝑡−1
𝑗,𝑤 )

)
(3)

After computing the similarity between nodes, we obtain the
𝑡𝑜𝑝 − 𝐾 most similar nodes as semantic neighbors for each node,
and define the 𝐺𝑠 the same as 𝐺𝑑 does.

3.3 Deep Multi-relational Spatio-Temporal
Network

3.3.1 Spatial Features. The spatial-aware graph and the semantic-
aware graph reflect the internode correlations from distinct per-
spectives. To enhance the performance of WPF, we combine spatial-
aware graph and the semantic-aware graph when capturing spatial
features. For each wind turbine, we aggregate the wind speed in-
formation from 1-hop neighbors in both 𝐺𝑠 and 𝐺𝑑 , which helps

target turbine to extract a more informative representation. The
aggregation process can be formulated as:

𝑥𝑡𝑖,𝑤 (𝑑) = CONCAT(𝑥𝑡𝑖,𝑤 ,AGGREGATE(𝑥
𝑡
𝑢,𝑤 , 𝑢 ∈ N𝑑 (𝑖))) (4)

𝑥𝑡𝑖,𝑤 (𝑠) = CONCAT(𝑥𝑡𝑖,𝑤 ,AGGREGATE(𝑥
𝑡
𝑢,𝑤 , 𝑢 ∈ N𝑠 (𝑖))) (5)

𝑥𝑡𝑖,𝑤 = CONCAT(𝑥𝑡𝑖,𝑤 (𝑑), 𝑥𝑡𝑖,𝑤 (𝑠)) (6)

where 𝑥𝑡
𝑖,𝑤

is the wind speed of wind turbine 𝑖 at timestamp 𝑡 .N𝑑 (𝑖)
is the set of neighbor nodes of node 𝑖 in graph 𝐺𝑑 . N𝑠 (𝑖) is the set
of neighbor nodes of node 𝑖 in graph 𝐺𝑠 . 𝑥𝑡𝑖,𝑤 is the aggregated
spatial features of wind turbine 𝑖 at timestamp 𝑡 .

3.3.2 Turbine Embedding. If the prediction model is built for each
wind turbine, it will incur problems such as too many models and
poor generalization of models. Therefore, it is more appropriate to
build deep learning model based on the wind farm rather than a
single wind turbine. To make power prediction for a specific wind
turbine, and allow the model to share parameters between wind
turbines, we need to provide the model which wind turbine the
current data comes from through the model input. We represent
each turbine with a learnable latent vector by adding an embedding
layer to the model. The embedding layer can reduce the dimension
of the wind turbine one-hot sparse vector representation into a
dense vector representation.

𝑔𝑖 = 𝑒𝑖𝐸, 𝐸 ∈ R𝑁×𝑑𝐸 (7)
3
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where 𝑔𝑖 is the latent vector of the 𝑖th wind turbine, 𝐸 is learnable
embedding matrix, 𝑒𝑖 is one-hot verctor of the 𝑖th wind turbine, 𝑑𝐸
is the latent vector dimension, 𝑁 is the number of wind turbines
in the wind farm. After model training, the more similar the latent
vectors, the more similar the power patterns of the wind turbine.

3.3.3 Temporal Features. The sequence-to-sequence (Seq2Seq) mo-
del based on recurrent neural network (RNN) is widely used in
multi-horizon sequence forecasting scenarios. Seq2Seq is mainly
composed of RNN-based encoder and decoder, and RNN is com-
monly used with its variants: long short-term memory network
(LSTM) or gated recurrent unit (GRU). GRU uses update gate to
adjust the balance between forget gate and input gate in LSTM,
avoiding the redundancy of forget gate and input gate. Thus, it is
simpler in network structure than LSTM. In our model, GRU is used
to build Seq2Seq model.

In terms of model encoder input, we assume that the wind tur-
bine features corresponding to timestamp 𝑡 ≤ 𝑡 are available at
timestamp 𝑡 . We use the𝑇 -length timewindow [𝑡−𝑇 +1, · · · , 𝑡−1, 𝑡]
to capture the temporal features. For wind turbine 𝑖 at timestamp
𝑡 , we first extract the spatial feature of the wind speed 𝑥𝑡

𝑖,𝑤
to ob-

tain 𝑥𝑡
𝑖,𝑤

, and then concat it with the wind turbine embedding 𝑔𝑖
and other wind turbine feature 𝑥𝑡

𝑖,𝑜𝑡ℎ𝑒𝑟
(e.g., temperature, weather,

turbine internal states, etc.). The function is as follows:

𝑥𝑡𝑖 = CONCAT(𝑔𝑖 , 𝑥𝑡𝑖,𝑤 , 𝑥
𝑡
𝑖,𝑜𝑡ℎ𝑒𝑟

) (8)

ℎ𝑡𝑖 = GRU(𝑥𝑡𝑖 , ℎ
𝑡−1
𝑖 ) (9)

where ℎ𝑡
𝑖
is hidden feature at timestamp 𝑡 for wind turbine 𝑖 .

In terms of model decoder input, we use the ℎ𝑖𝑡 of the encoder
as the initial hidden state of the GRU in the decoder, and then
concat predicted power 𝑦𝑡+1

𝑖
at the previous timestamp 𝑡 with the

wind turbine embedding and other known future feature (e.g., time
and wind turbine position) as model input at timestamp 𝑡 + 1. The
function is below:

𝑥𝑡+1
𝑖 = CONCAT(𝑔𝑖 , 𝑦𝑡+1

𝑖 , 𝑥𝑡+1
𝑖,𝑜𝑡ℎ𝑒𝑟

) (10)

ℎ𝑡+1
𝑖 = GRU(𝑥𝑡+1

𝑖 , ℎ𝑡𝑖 ) (11)

𝑦𝑖+2
𝑖 = LR(ℎ𝑡+1

𝑖 ) (12)

where 𝑦𝑖+2
𝑖

is the predicted power value at timestamp 𝑡 + 2. The
decoder autoregressively predicts the wind turbine power for 𝜏
time steps.

3.4 Spatio-Partitioned Time-Phased Tree Model
3.4.1 Tree Model. Tree models are widely used in various scenar-
ios because of good robustness. Gradient Boosting Decision Tree
(GBDT) is an iterative-based decision tree algorithm. The basic
idea is to set the base learner as a decision tree, use the negative
gradient information of the loss function to iteratively generate the
base learner 𝑓𝑘 , and accumulate the trained base learners to form
the final model. Given a data set 𝐷 = {𝑥𝑖 , 𝑦𝑖 }, GBDT learns 𝐾 tree
via fitting the pseudo-residuals of all the previous trees. The loss
function in the training process is as:

𝐿(Φ) =
∑︁
𝑖

𝑙 (𝑦𝑖 , 𝑦𝑖 ) +
∑︁
𝑘

Ω(𝑓𝑘 ) (13)

where 𝑦𝑖 is the ground truth of the 𝑖th sample, 𝑦𝑖 is the predicted
value of the 𝑖th sample, 𝑓𝑘 is the 𝑖th decision tree, and 𝑙 is the loss
function (commonly used losses for regression problems are𝑀𝑆𝐸
and 𝑀𝐴𝐸). Ω is the regular term, and the regular term penalizes
the complexity of each decision tree.

There are already second-order variant models based on GBDT
such as XGBoost [4], LightGBM [12], and CatBoost [17]. Due to
LightGBM’s fast training speed and good ability to handle noisy
data, we use LightGBM to build a spatio-partitioned time-phased
tree model (ST-Tree).

3.4.2 Spatio-Partitioned. In the spatial dimension, considering the
wake effect of the wind farm and the location distribution of wind
turbines, wind turbines under similar wind conditions are likely
to have similar states. Thus, we cluster the wind turbines in the
wind farm based on the wind speed similarity, and build a separate
tree model for each cluster partition, which not only improves
the accuracy but also increases the robustness of the model. Here,
we use pearson correlation coefficient to calculate the similarity
between turbines, formulated as:

PearsonSim(𝑖, 𝑗) =

∑𝑇
𝑡=1

(
𝑥𝑡
𝑖,𝑤

− 𝑥𝑖,𝑤
) (
𝑥𝑡
𝑗,𝑤

− 𝑥 𝑗,𝑤
)

√︂∑𝑛
𝑖=1

(
𝑥𝑡
𝑖,𝑤

− 𝑥𝑖,𝑤
)2 (

𝑥𝑡
𝑗,𝑤

− 𝑥 𝑗,𝑤
)2

(14)

where 𝑥𝑡
𝑖,𝑤

represents the wind speed feature of turbine 𝑖 at times-
tamp 𝑡 , and 𝑥𝑖,𝑤 denotes the average wind speed of turbine 𝑖 . We
utilize 𝐾-means to spatially cluster the wind farm based on the
wind speed similarity for each wind turbine pair.

3.4.3 Time-Phased. In the temporal dimension, considering that
this forecasting task belongs to a long-term series forecasting prob-
lem, the tree model only supports single-output forecasting, which
is different from the Seq2Seq model. Building a tree model for each
timestamp would lead to too many models and the risk of model
overfitting. Therefore, tree models are constructed by segmenting
time steps, as shown in Figure 1. We build a tree model at predicted
timestamp 𝑡 +1 to 𝑡 +𝛿 , and add a column of unique ID feature to the
sample features in order to distinguish different timestamps. Fur-
ther, the wind turbine features of the previous day or week before
the predicted timestamps can also be input as model features.

The advantage of the time-phased tree model is that it may
effectively reduce the number of models, and can also enhance the
robustness of the model according to different time-phased modes.

3.5 Ensemble Model
In the regression task, the model ensemble methods mainly in-
clude the averaging method and the learning method. The average
method is to directly perform a simple average or weighted average
for the predicted values of each model. The learning method is
to use the meta learner to learn the combination strategy accord-
ing to the data instead of artificially specifying, mainly including
Blending and Stacking. Since the wind turbine data distribution is
unstable, the learning method could cause the model overfitting,
and the simple weighted average fusion strategy cannot be applied
to the variable wind turbine data distribution. Hence, we propose a
data-driven ensemble strategy such as Algorithm 1, based on the
following characteristics of long-term WPF:
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Algorithm 1: Data-driven Ensemble Strategy
Input: 𝑿𝒑 ∈ R𝑁×𝑇×1 is the power value of model input,

𝒀̂ 1 ∈ R𝑁×𝜏×1 is the predicted value of DMST,
𝒀̂ 2 ∈ R𝑁×𝜏×1 is the predicted value of tree model, 𝜙 is the
baseline value, Δ𝑙𝑜𝑤 and Δ𝑢𝑝 are the judgment threshold of
the current power level, 𝛽 is timestamp.

Output: 𝒀̂ is the predicted value
1 Initialize 𝑠 = Mean(𝑿𝒑[:,−5 :, :])
2 Initialize 𝒀̂ = 0
3 if 𝑠 < Δ𝑙𝑜𝑤 or 𝑠 > Δ𝑢𝑝 then
4 𝒀̂ [:, : 𝛽, :] = 𝒀̂ 2 [:, : 𝛽, :]
5 else
6 𝒀̂ [:, : 𝛽, :] = 0.5 × 𝒀̂ 2 [:, : 𝛽, :] + 0.5 × 𝒀̂ 1 [:, : 𝛽, :]
7 𝒀̂ [:, 𝛽 :, :] = 𝒀̂ 1 [:, 𝛽 :, :] + 𝜙

• Different models have different predictive ability for dif-
ferent time periods. The ability of the ST-Tree model for
short-term forecasting is better than that of the DMST, and
the ability of the DMST for medium-term and long-term
prediction is better than that of the ST-Tree model.

• When the current wind power is too large or too small, the
short-term forecasting curve of the DMST is steep, other-
wise the effect of the DMST in the short-term prediction is
also available.

• DMST learns accurately wind power trends in medium-
term and long-term prediction, while the baseline predic-
tion is less accurate. When the current wind power is large,
the predictions of DMST are conservative.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. In the Baidu KDD CUP 2022, organizers provide a
unique spatial dynamic wind power forecasting (SDWPF) dataset.
The SDWPF dataset is collected from the Supervisory Control and
Data Acquisition (SCADA) system of a wind farm. The SCADA
data are sampled every 10 minutes from each wind turbine in the
wind farm which consists of 134 wind turbines. The SDWPF dataset
contains 4,727,520 data records for 245 days. The dataset includes
critical external features and essential internal features which can
indicate the operating status of each wind turbine, and the relative
positional distribution of all wind turbines in the wind farm is also
provided.

4.1.2 Parameter Settings. In the multi-relational graph constructor
module, 𝐾 is set to be 5 in both spatial-aware graphs and semantic-
aware graphs. In the DMST module, the model is trained by means
of the Adam optimizer [13]. The learning rate is set to be 0.001. The
encoder GRU hidden size is 64, and the decoder GRU hidden size
is 32. The wind turbine embedding size is 5. The historical time
steps length 𝑇 is 432, and predicted time steps length 𝜏 is 288. In
the encoder, 𝑥𝑡

𝑖,𝑜𝑡ℎ𝑒𝑟
contains ten features: Etmp, Itmp, Wdir, Ndir,

Pab1, Prtv, Patv (the meaning of the columns is found in [23]), Hour
and turbine position. In the decoder, 𝑥𝑡

𝑖,𝑜𝑡ℎ𝑒𝑟
includes two features:

hour and turbine position. In the ST-Tree module, the number of
spatial partitions is 3, the number of temporal phase is 1, and its

Table 1: Online scores with different models. The footnotes
(e.g., 1st) in the table denote the online rank of the corre-
sponding method in Baidu KDDCup 2022.

Method Phase 1 Phase 2 Phase 3

AutoFormer 45.5570 – –
SCINet 46.4679 – –
AGCRN 41.3100 – –

GRU (Baseline) 42.3019 46.9968 –
ST-Tree 40.7903 (3rd) 45.1745 –
GWNET – 48.8300 –
DCRNN – 47.3043 –
ASTGCN – 48.0889 –

DST – 44.4205 –
DMST – 44.2845 –

FDSTT (w/o avg) – 44.0942 45.0405
FDSTT (w/o 𝜙) – 44.0732 45.0169

FDSTT – 44.0536 (2nd) 44.9171 (1st)

length 𝛿1 is 30. The tree model is built based on LightGBM, and
the learning rate is 0.1. Besides, the depth of the tree is 15, and the
number of nodes tree is 20. When training the model, we adopt
wind speed and power at timestamps from 𝑡 − 30 + 1 to 𝑡 , while
we obtain Etmp, Itmp, Wdir, Ndir, Pab, Prtv, TurbID and hour at
timestamp 𝑡 . Also, we adopt statistical features (max, min, mean
and median) over last 14 days and the predicted timestamp ID. In
the ensemble module, Δ𝑙𝑜𝑤 is set to 350 and Δ𝑢𝑝 is set to 700 in the
data driven ensemble strategy. Besides, 𝜙 is 15, and 𝛽 is 30.

4.2 WPF Performance
In this subsection, we report the WPF performance of FDSTT on
both the official KDD CUP 2022 test dataset and the self-constructed
test dataset. The results are presented in Sections 4.2.1 and 4.2.2,
respectively.

4.2.1 Performance on Official KDD CUP 2022 Test Dataset. To ver-
ify the effectiveness of our proposed FDSTT method, we compare
it with time series forecasting and spatio-temporal forecasting
methods, including GRU, AutoFormer, SCINet, GWNET, AGCRN,
DCRNN, ASTGCN and DST. Table 1 depicits the results obtained on
the official KDD CUP 2022 test dataset for the three phases. From
this table, we can observe that our proposed FDSTT model outper-
forms the classic models during all the three phases, which verifies
the superiority of our methods. Moreover, FDSTT has win the 1st
in the final Phase and the 2nd in Phase 2 of the KDD CUP 2022. Be-
sides, the primary version of FDSTT has win the 3rd place in Phase
1. These results demonstrate that FDSTT can achieve consistently
superior performance over different test datasets.

4.2.2 Performance on Self-constructed Test Dataset. We have con-
structed an offline test dataset to complete fast evaluation. This
offline test dataset contains randomly sampled data from the last
30 days in the training set. Specifically, we randomly set 50 time
points, and then, we extract the data of past 14 days and future 2
days for each time point to construct the offline test dataset.

Using this self-constructed test dataset, we compare FDSTT with
the baselines, includingGRU, AutoFormer, SCINet, GWNET, AGCRN,
DCRNN, ASTGCN, and DST. The comparison results are reported
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Table 2: The performance of different methods.

Method MAE RMSE Score

GRU (baseline) 37.0174 47.0442 42.0308
AutoFormer 42.8972 54.3160 48.6066

SCINet 40.2794 47.8892 44.0843
GWNET 43.1812 55.1324 49.1568
AGCRN 40.9344 52.4761 46.7052
DCRNN 39.6786 48.4222 44.0504
ASTGCN 37.9236 46.2108 42.0672

DST 36.8172 46.1150 41.4661
FDSTT (ours) 36.3872 45.5246 40.9559

Table 3: Ablation study of different modules of FDSTT .

Method MAE RMSE Score

DMST 36.8119 46.0136 41.4128
w/o mg 36.8172 46.1150 41.4661

ST-Tree 37.0405 46.3101 41.6753
w/o sp 37.3759 46.3857 41.8808

Ensemble 36.3872 45.5246 40.9559
w/o 𝜙 36.4568 45.6260 41.0414
w/o avg 36.3410 45.8520 41.0965

in Table 2. Obviously, our method achieves the best performance.
The baselines have inferior performance because:

• The time series forecasting models (namely, GRU, Auto-
Former, SCINet) ignore the spatial features of wind tur-
bines.

• The CNN-based spatio-temporal methods (viz..., GWNET,
ASTGCN), are not good at long-term time series forecasting
when the periodicity of the data is weak.

• The RNN-based spatio-temporalmodels (i.e., DCRNN,AGCRN)
are not suitable for spatial aggregation of all features of
wind turbines, and wind speed should be used instead.

• The baselines ignore the unstable data distribution, inwhich
case it is necessary to control the complexity of the model
and propose an effective ensemble strategy.

4.3 Analysis
To evaluate the effect of the key components for our proposed
model, we conduct an ablation study on these components based
on our self-constructed test dataset. The ablation settings are as
follows:

• w/o mg: DMST whose graph is generated based on only
spatial distance and without considering semantic neigh-
bors.

• w/o sp: ST-Tree model whose spatial dimension is not par-
titioned by cluster.

• w/o 𝜙 : Model ensemble strategy without adding baseline
value 𝜙 according to the current data distribution.

• w/o avg: Model ensemble strategywithout averagingmodel
predictions.

The results are shows in Table 3. From this table, it is observed
that all the components are indispensable for the superior perfor-
mance of our proposed method.

5 RELATEDWORK
Wind power forecasting has been extensively studied over the past
decades. Related studies can be divided in to five categories: physical
modeling methods, statistical model methods, machine learning
methods, deep learning methods, and the combination methods.

Physical modeling methods use physical models to predict wind
power by simulating wind, pressure, air density [8, 9], which have
achieved proper performance in the mid-long term WPF. The re-
lationship between wind power and meteorological factors is 𝑃 =

𝐶𝑝𝐴𝜌𝑣
3/2, where 𝑃 is the output power of wind turbines, 𝑣 is the

wind speed 𝐴 is rotor swept area, 𝜌 is the air density, 𝐶𝑝 is the
power factor of wind turbine. Wind speed is a key factor as it varies
substantially. Administrators of a wind farmwill change pitch angle
of blade to protect wind turbine under certain circumstances.

Several researchers regard WPF as a time-series problem, and
use statistical models to predict wind power [7, 8, 10, 18]. Machine
learning methods are also widely used such as XGBoost, SVR, RF
or combinations of these methods [3, 6]. Deep learning methods
also become popular in recent years [1, 2, 5, 11, 14, 15, 20, 21], e.g.,
GRU, Graph Wavenet, AGCRN, DCRNN, STGNN, and DST. Besides
these single models or methods, researchers also combine different
models together to achieve proper prediction performance [16, 22].

6 CONCLUSION
In this paper, we propose a novel ensemble model FDSTT for long-
term WPF, which consists of a multi-relational graph construc-
tor module, a deep multi-relational graphs-based spatial-temporal
module, a spatio-partitioned-time-phased tree module, and a data-
driven ensemble module. In the multi-relational graph constructor
module, we construct multi-relational graphs based on distance
neighbors and semantic neighbors. In the deep multi-relational
spatio-temporal network (DMST), we use wind speed data for spa-
tial feature extraction via a multi-relational graph, and adopt a
GRU-based Seq2Seq model to capture the temporal features. In the
spatio-partitioned time-phased tree model (ST-Tree), the wind farm
is spatially clustered based on the correlation of the wind speed
data, and the model is built by time phase instead of each times-
tamp. It not only effectively reduces the number of models, but
also enhances the model robustness. Based on this model ensemble
strategy, we propose a data driven ensemble strategy for unstable
data distribution according to the characteristics of different models
in WPF. Finally, our proposed model FDSTT won the 1st in the final
Phase of the KDD Cup 2022 competition and the 2nd in the Phase
2 of the KDD Cup 2022 competition.
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