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ABSTRACT
Wind Power is a promising renewable source which has become
widely used in recent years. Wind power forecasting is a critical
issue which is beneficial to maintain the balance between power
generation and consumption. However, the problem is also chal-
lenging due to limited information and the variety of time series.
In this paper, we proposed an efficient deep learning framework
to address the spatial dynamic wind power forecasting challenge
in Baidu KDD Cup 2022. In our solution, we constructed three
kinds of deep learning models utilizing both time series and spa-
tial distribution and finally integrated them by model averaging.
Our method is highly efficient and robust which can achieve a
score of -46.18 in the phase 3. The source code is available at
https://github.com/hansu1017/SDWPF-Baidu-KDD-Cup-2022.
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1 INTRODUCTION
Wind energy is a clean and safe renewable resource which plays an
important role for a sustainable future. However, the power gener-
ated by wind turbines varies rapidly due to the fluctuation of wind
speed and wind direction as well as the terrain, humidity, date and
time of the day[6]. Thus, a balance is highly desired between the
power supply and demand[4]. It’s necessary to explore an accurate
wind power forecasting method which can effectively reduce the
enormous impact on grid operation safety when high permeabil-
ity intermittent power supply is connected to the power grid[1].
Multiple methods have been proposed to address this problem such
as physical methods[2], statistical methods[5] and deep learning
models[3].
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The Baidu KDD Cup proposed a spatial dynamic wind power
forecasting (SDWPF) challenge which aims to predict the active
power of the next 288 time points for each turbine providing partic-
ipants with the dynamic context and spatial distribution[7]. How-
ever, the SDWPF problem is still challenging. First, how to effec-
tively integrate spatial-temporal information is critical. Second,
the characteristic of multiple time series is difficult to be captured,
which makes it challenging to precisely forecast the relatively long-
term active power sequence. Third, the original dataset contains a
large amount of unknown values, hence how to process the data
properly is also challenging.

To address the above challenges, we proposed a spatial-temporal
ensemble deep learning framework which can obtain a relatively
accurate and robust prediction for SDWPF. To effectively integrate
spatial-temporal information, we utilized both time series and space
distribution information as features to comprehensively forecast
the wind power. Besides, we developed three kinds of deep learning
models to fully exploit the spatial-temporal information. In addition,
to improve the robustness of our method, we sampled the data with
different seeds to enrich the training set and dropped samples with
too many unknown values. Our proposed framework achieved an
score of -46.18 in the phase 3 which ranked 13 in the paddlepaddle
track.

2 PROPOSED FRAMEWORK
Figure 1 illustrates themain flow of our proposed framework. Firstly,
five variables including Wspd (Wind speed), Pab1 (Pitch angle of
blade 1), Etmp (Temperature of the surrounding environment), Itmp
(Temperature inside the turbine nacelle), Patv (Active power) along
with the spatial distribution information were selected from all the
available information according to our multiple attempts. Secondly,
we generated sequence features from the five variables and obtained
three small datasets by random sampling and outlier elimination.
Then, three deep learning models based on CNN and GRU were
constructed to integrate the spatial-temporal information. Finally,
the forecast values were assembled by model averaging to improve
the robustness.

2.1 Preprocessing
The SDWPF dataset provided by Baidu contains a wind power
dataset and a location dataset. The wind power dataset sampled
data from every 10 minutes from each wind turbine in the farm and
the total days and turbines are 245 and 134 respectively. The location
dataset provided the relative position of all turbines[7]. To construct
training set, for the turbine 𝑖 at timestamp 𝑡 , we took the time series
from 𝑡 − 144 to 𝑡 as features and the Patv from 𝑡 + 1 to 𝑡 + 288 as the
target to be predicted. Due to the large sample size of the training
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Figure 1: Our proposed framework for the spatial dynamic wind power forecasting

set and the large number of sequences with overlap, the training
set of each turbine was randomly sampled by a ratio of 0.01 and the
sampled data of all turbines were subsequently concatenated and
shuffled, which not only performed better in offline experiments,
but also remarkably improved the training speed. To fully make
use of the temporal information, We generated three datasets by
repeating the above steps with three different seeds which enhanced
the robustness of models.

Besides, we also processed the samples in the training set with
too many unknown values. According to the official report[7], sam-
ples with Patv less than 0 or Pab1 more than 89◦ can be considered
as unknown values. By data analysis, we found a considerable
percentage of unknown samples in the training sets, which had
significantly negative impact on the accuracy of SDWPF. Thus, we
dropped the samples with at least one sequence that contains more
than 100 unknown values.

2.2 Feature engineering
Through offline experiments, we found that using all sequences is
not as good as using part of sequences including Wspd sequence,
Patv sequence, Pab1 sequence, Etmp sequence and Itmp sequence.
For the two sequences related to temperature, we constructed the
absolute difference between Etmp and Itmp as a new sequence
whichwas denoted as Temp. Besides, for all models, we introduced a
spatial Patv sequence based on space distribution. More specifically,
for each turbine of each timestamp, we calculated the Euclidean
distance with other turbines. Then, we selected the 121 closest
turbines and used their Patvs to construct a new sequence denoted
as spatial-Patv.

2.3 Deep learning models with spatial-temporal
data

We trained three kinds of deep learning models with different
structures including a CNN model with multichannel time series
(TsCNN), a CNN model with spatial-temporal information (SpCNN)
and a GRU model with spatial-temporal information (SpGRU). The
first model only trained by one dataset, while the others were

trained using three datasets to fullymake use of the temporal-spatial
information. Additionally, the final predictions were obtained by
calculating the arithmetic mean of all model outputs.

2.3.1 CNN model with multichannel time series. Figure2(a) demon-
strates the structure of the model. By data analysis, we found the
time series had a cyclical pattern, thus we decided to use convo-
lution kernels to learn the cyclical pattern. Specifically, we trans-
formed the four sequences includingWspd sequence, Patv sequence,
Pab1 sequence and the Tmp sequence into a 4-dimensional array
with size 12*12*4. Then, the map was input to a CNN layer with 3*3
convolution kernels and a residual network which is also a CNN
with 1*1 kernels. Then, the feature maps of the two network were
added and continuously input to two similar networks. Finally, the
output went through a third CNN layer and obtain the predictions
by a fully connected layer. Each CNN layer contains an average
pooling which equivalent to do moving average for time series in
order to further learn the cyclical pattern.

2.3.2 CNN model with spatial-temporal information. Unlike the
CNN based model above, in this model, the length of each time
series sequence was 121. Besides, we introduced the spatial feature
to the CNN model. With regard to the model structure, as shown
in Figure2(b), for time series, we simplified the CNN layers with
multichannel time series to two and added a CNN layer to learn
spatial patterns. It was noteworthy that in the CNN layer 3, we re-
placed the mean-pooling by max-pooling to highlight the neighbor
turbines with strong influence.

2.3.3 GRU model with spatial-temporal information. As shown
in Figure2(c), in this model, four 144-length sequences including
Wspd sequence, Patv sequence, Itmp sequence and Etmp sequence
were extended to 288-length by complementary zeros, which were
subsequently input to a GRU layer to learn the trend of time series.
Meanwhile, the spatial feature went through a CNN layer to learn
the spatial distribution. Finally, the output of two kinds of layers
were concatenated and transformed to the final prediction by a
fully connected layer.
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Figure 2: Deep learning models in proposed framework. (a) CNN model with multichannel time series (TsCNN). (b) CNN model
with spatial-temporal information (SpCNN). (c) GRU model with spatial-temporal information (SpGRU).

3 EXPERIMENTS
3.1 Offline evaluation
For offline evaluation, we not only used the official file 0001𝑜𝑢𝑡 .𝑐𝑠𝑣
as the validation set (Offline1), but also constructed our own offline
validation sets (Offline2). Specifically, from the day 226, the data of
every two days thereafter were treated as a validation set and the
total number of our own validation files is 30. Additionally, since
we predicted the Patv of all turbines by using the same models, we
optimized the offline evaluation process which calculated the score
of all turbines at once to significantly reduce the evaluation time.

3.2 Performance
Figure 3 displays the predicted curves of the three models using
dataset1 as training set and 0001𝑜𝑢𝑡 .𝑐𝑠𝑣 as validation set. As can be
seen in the figure, the predictions of the three models are close but
still exist differences. The CNNmodel with multichannel time series
is good at learning large fluctuations, while the CNN with spatial-
temporal information tends to learn small fluctuations better. In
addition, the GRU model with spatial-temporal information has a
smoother predicted curve and can better forecast the overall trend
of the next 288 time points.

Table 1 illustrates the offline and online results of different frame-
works. It can be found that using one kind of model has inconsistent
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Figure 3: Predicted curves of three models in our proposed
framework

Table 1: Performance comparison

Method Offline1 Offline2 Online

TsCNN -42.44 -46.27 -
3 SpCNNs -44.66 -44.35 -
3 SpGRUs -45.14 -42.72 -

TsCNN + 3 SpCNNs -43.94 -44.63 -46.30
Proposed framework -44.36 -43.36 -46.18

performance on different validation sets, while model averaging
can apparently improve the robustness of the final performance.
Our proposed framework outperformed other methods on both
Offline2 and online validation sets, which can achieve a score of
-43.36 and -46.18 respectively. In addition, our proposed framework
is relatively efficient since the evaluation time for 30 predictions is
194.76 seconds on a Linux machine with Tesla V100 GPU.

4 CONCLUSIONS
In this paper, our team proposed an effective deep learning frame-
work to address the spatial dynamic wind power forecasting chal-
lenge. To enhance the efficiency and robustness of the models, we
generated and sampled the sequences and dropped the samples with
too many unknown values. By performing offline experiments, we
selected five sequences and constructed two new sequences includ-
ing Tmp sequence and spatial-Patv sequence. As for models, we de-
veloped three kinds of deep learning models including CNN model
with multichannel time series, CNN model with spatial-temporal
information and GRU model with spatial-temporal information and
integrated their predictions by model averaging.
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