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ABSTRACT
As a pollution-free and renewable energy, wind power has great
potential for development. Some of the largest obstacle that
hinders the process of incorporating wind energy into a grid
system are noisy data and uncertainty. As the active power
output of wind farms is highly dependent on local weather
conditions such as wind speed and wind direction which change
rapidly, accurate wind power forecasting (WPF) is a promising
task that draws great attention. In this paper, we propose a
novel framework that ensembles LightGBM model and GRU
model. Tree-based model is robust to outliers and missing
values, and have good interpretability which helps with feature
engineering optimization. These advantages make LightGBM one
of the most common methods in data mining competitions. And
to handle with time-series feature, we build encoder-decoder
architecture based on GRU to capture correlation of different
time scales. Some heuristic techniques are adopted to facilitate
model learning. Online evaluation shows that our model gives a
reliable prediction of the active power. The code is available at
https://github.com/injadlu/KDDCUP2022.
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1 INTRODUCTION
Renewable energy, such as wind energy, plays an increasingly
important role in power system, due to its clean and safe nature[5].
Sometimes the electricity generated by the wind turbines is
transmitted to large utility grids which have high demand of
power quality and stability[6]. Hence wind power forecasting
(WPF) is a crucial task, and accurate prediction could possibly
help with management strategies like load dispatch planning and
maintenance schedule [2].
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However, WPF is challenging for two reasons: noisy data and
high variability. First of all, some critical features such as wind
speed and wind direction can be missing or have abnormal values
due to the operating status of the sensors, which put forward
high requirements on model robustness; additionally, levels of
production of wind energy have high variability [4]: this variability
comes from its dependence on unstable weather conditions present
at the wind farm, from this perspective, summarizing dynamic
historical time-series data to predict the future is an intuitive way
to handle the problem.

In our work, to address above challenges, we investigate
strategies on ensembling LightGBM [3] and GRU [1] model. For
robustness, LightGBM can learn from outliers and missing values,
and have good interpretability which helps promote the quality
of feature engineering. What’s more, tree-based models have non-
linear capability and are unlikely to overfit. In addition, to alleviate
variability issue, we design an encoder-decoder architecture based
on GRU, which predict the future data with historical sequence
of the same wind farm. Besides, we propose some heuristic
techniques including data preprocessing and feature engineering.
The experiments show that our solution can achieve relatively low
value on the given evaluation metric.

2 METHOD
In this section, we will introduce feature engineering, model
architecture, and model prediction in detail. In Section 2.1, we
have outlined the overall structure of our model. In Section 2.2 and
Section 2.3, we further introduce the pre-process of data, model
training, and the post-process of prediction.

2.1 Model Overview
As shown in the Fig 1, our method can be divided into three
parts: data preprocessing, model training and prediction result
post-processing. The dataset used for the competition collected 245
days of the wind farm. The data is collected in real scenarios and
contains a large amount of dirty data. Therefore, we first simply
cleaned the data and use the relatively cleaner data to support
the model training. To ensure the robustness of the model, we
trained two different types of models for each wind turbine which
consist of the neural network model GRU and the GBDT model
LightGBM. So we will get 134 groups of models. They are often
used to solve time series prediction problems. As for the difference
of two types of models, we need to generate training data in
different formats. While training the model, we also design a new
optimization objective for GRU. Finally, We fuse the prediction
results of two models and aggregate the prediction results of
adjacent wind turbines using the location information of wind
turbines.
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Figure 1: Model overview for our method. It can be divided
into three parts: data preprocessing, model training and
prediction result postprocessing
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Figure 2: The box figure of two wind turbines’ temperature
features.

2.2 LightGBM Model
2.2.1 Data Preprocessing. LightGBM is one of the most common
methods in data mining competitions which is very convenient to
fit the tabular data. However, there is a lot of noise in the data. For
example, as shown in the Fig 2, the environment temperature and
the internal temperature of wind turbine in the data have many
outliers, which make the data harder to fit. First of all, we fill the
missing data with the mean value of the corresponding feature.
And then, we calculate the median of temperature in groups of the
day across different wind turbines 𝑡𝑚 . For the temperature feature
𝑡𝑖 in the dataset, if 𝑡𝑖 is far from the corresponding 𝑡𝑚 , we replace
the 𝑡𝑖 with 𝑡𝑚 . Formally, if |𝑡𝑖 − 𝑡𝑚 | > 10, we treat 𝑡𝑖 as an outlier.
Considering that some sensors are aging, the collected data may be
biased.

We decided to reduce the uncertainty in the data by smoothing
the data from adjacent wind turbines. We define the position of
the wind turbine 𝑇𝑖 is (𝑥𝑖 , 𝑦𝑖 ). For each turbine pair (𝑖, 𝑗), we
calculate the Euclidean Distance 𝑑𝑖 𝑗 =

√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2

and choose four nearest wind turbines as neighbors for each
one. For turbine 𝑇𝑖 , assume that the distance and features of 𝑇𝑖
with itself and its neighbors are 𝑑 = (0, 𝑑𝑖,𝑖1 , 𝑑𝑖,𝑖2 , 𝑑𝑖,𝑖3 , 𝑑𝑖,𝑖4 ) and
𝑓 = (𝑓𝑖 , 𝑓𝑖1, 𝑓𝑖2, 𝑓𝑖3, 𝑓𝑖4) . We obtain the proportion of aggregation
𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝑑𝜌 ). Finally, the aggregated feature of turbine 𝑇𝑖 is
𝑓𝑇𝑖 =< 𝑓 , 𝑎 >. Furthermore, according to the value of 𝑎, we define
the adjacency matrix 𝑆 ∈ R134×134. For each line of 𝑆 , there are
five nonzero values which are equal to the output of the softmax
function. The entire data preprocessing is shown in Figure 3.

2.2.2 Feature Engineering. We construct training data mainly by
the lag features. First of all, We compress the amount of data. We
replace the features of the adjacent timestamps with the mean of
their features As a result, the number of features per 24 hours

Figure 3: Data preprocessing for LightGBM training.

dropped from 144 to 72. Since we have 10 columns of features, the
total number of features is still huge, andwewant to sift through the
most important ones. We hope to select the regular and meaningful
features. After carefully selecting, we keep𝑊𝑠𝑝𝑑, 𝐸𝑡𝑚𝑝, 𝐼𝑡𝑚𝑝, 𝑃𝑎𝑡𝑣

as the feature for LightGBM training. We will discuss the feature
selection in Section 3.1.2. Assume that recent timestamp is 𝑡 , we
want to predict the power of the subsequent 288 timestamps, which
can be formulated as 𝑃𝑡+1, 𝑃𝑡+2, ..., 𝑃𝑡+288. As mentioned above, we
construct new features using themean values of adjacent timestamp
features. We will also use one model to predict the power of two
timestamp. That is ˆ𝑃𝑡+1 = ˆ𝑃𝑡+2 = 𝐿𝐺𝐵1 (𝑓 𝑡 ). ˆ𝑃𝑡+1 means the
predicted power of timestamp 𝑡 + 1 and 𝑓 𝑡 means the feature of
timestamp 𝑡 . 𝑓 𝑡 is constructed by lag features with 108 order. It can
be formulated as

𝑓 𝑡 = (𝑊𝑠𝑝𝑑𝑡−107, 𝐸𝑡𝑚𝑝𝑡−107, 𝐼𝑡𝑚𝑝𝑡−107, 𝑃𝑎𝑡𝑣𝑡−107,𝑊 𝑠𝑝𝑑𝑡−106,

𝐸𝑡𝑚𝑝𝑡−106, 𝐼𝑡𝑚𝑝𝑡−106, 𝑃𝑎𝑡𝑣𝑡−1067, ...,𝑊 𝑠𝑝𝑑𝑡 , 𝐸𝑡𝑚𝑝𝑡 , 𝐼𝑡𝑚𝑝𝑡 , 𝑃𝑎𝑡𝑣𝑡 )
(1)

. And, the label of training 𝐿𝐺𝐵𝑖 is 𝑃𝑎𝑡𝑣2𝑖−1+𝑃𝑎𝑡𝑣2𝑖
2 , 𝑖 = 1, 2, ..., 144.

2.3 GRU Model
GRU is a popular model in handing time series data. In this
competition, we adopt the GRU as a baseline model. Followings are
the detailed description of our GRU method.

2.3.1 Data Preprocessing. The abnormal conditions is shown
in Table 1.The whole dataset contains 134 turbines with 35280
timestamps, hence the total number of data points is 4727520.
However, the total number of abnormal points is 1403543, which
means almost 30% of the training data is noisy. To tackle the noisy
data problem, we block the noisy data, and use the pure clean data
for GRU model optimization. We calculate mean and std statistics
on the clean data for each turbine. before put into GRU model, the
data is normalized by z-score normalization with clean mean and
std. Each data point contains 13 attributes, we select the normalized
𝑊𝑠𝑝𝑑,𝑊𝑑𝑖𝑟, 𝐸𝑡𝑚𝑝, 𝐼𝑡𝑚𝑝, 𝑁𝑑𝑖𝑟, 𝑃𝑎𝑏1, 𝑃𝑎𝑏2, 𝑃𝑎𝑏3, 𝑃𝑟𝑡𝑣, 𝑃𝑎𝑡𝑣 as the
feature for each data point.

2.3.2 Model Architecture. As shown in Fig 4, our GRU model is
an encoder-decoder architecture, and the GRU encoder shares
hidden states with the GRU decoder.The GRU encoder architecture
is designed to capture the time correlation information in input
sequence. And the GRU decoder is adopted to generate the output
sequence. Considering to improve the responsiveness for short time
series of the model, we propose 2 GRU model, 1 for the first half

2
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length output, namely GRU-FH(First Half), and another for total
length output, namely GRU-ALL. In this competition, for GRU-ALL
encoder, the length of input sequence is 144, the input sequence is
sampled from the dataset, which indicates the features of the most
recent day. And for GRU-ALL decoder, the length of input sequence
is 288, the input sequence is all-0. The output of decoder is our
prediction for the next 2 days. The input sequence of our GRU-FH
encoder is same as the GRU-ALL. For GRU-FH decoder, the length
of input sequence is 144, which indicates that our GRU-FH decoder
only predict for the next day.

2.3.3 Optimization. As the competition calculates the 𝑟𝑚𝑠𝑒 and
𝑚𝑎𝑒 distance as final score of the model, we adopt a combination
of 𝑟𝑚𝑠𝑒 and𝑚𝑎𝑒 loss. Our loss function can be formalized as :

𝐿𝑜𝑠𝑠 = 𝛼 ∗ 𝑟𝑚𝑠𝑒 + (1 − 𝛼) ∗𝑚𝑎𝑒 (2)

For a turbine with 288 length sequence output, the loss can be
formalized as :

𝐿𝑜𝑠𝑠 = 𝛼 ∗
288∑︁
𝑖=0

√︃
(𝑦𝑖 − 𝑓 (𝑔(𝑥))𝑖 )2 + (1 − 𝛼) ∗

288∑︁
𝑖=0

��(𝑦𝑖 − 𝑓 (𝑔(𝑥))𝑖 )
��

(3)

In Eq3, 𝑦 indicates the 288 length sequence ground truth, 𝑥 refers
to the 144 length sequence input. 𝑔 is the encoder, and 𝑔 takes 𝑥
as input, and saves the information of input sequence into hidden
states 𝑅. 𝑓 is the decoder, 𝑓 takes 288 length all-zero sequence as
input, with hidden states initialized as 𝑅, and 𝑓 outputs the 288
length sequence prediction.

To capture the time correlation information in training phase,
we keep the noisy data. However, optimizing with noisy data makes
the GRU model biased. To alleviate the issue above, when calculate
loss, we construct a clean data index set 𝑆 , and calculate loss with
indexed clean data. For a training sample(𝑥,𝑦), 𝑥 indicates the input
sequencewith 144 length,𝑦 refers to the ground truth sequencewith
288 length. As discussed above, to keep the time series information,
we keep the noisy 𝑥 , remove the noisy information in 𝑦. For a
sample (𝑥,𝑦), 𝑆 can be formalized as :

𝑆 = (𝑖 |𝑦𝑖 ∉ 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑆𝑒𝑡) (4)

Abnormal Set contains all data fits the abnormal conditions, the
abnormal conditions is shown in Table1. Thus, for a turbine training,
the Loss can be formalized as :

𝐿𝑜𝑠𝑠 = 𝛼 ∗
∑︁
𝑖∈𝑆

√︃
(𝑦𝑖 − 𝑓 (𝑔(𝑥))𝑖 )2 + (1 − 𝛼) ∗

∑︁
𝑖∈𝑆

��(𝑦𝑖 − 𝑓 (𝑔(𝑥))𝑖 )
��

(5)

The definition in Eq5 is the same as Eq3 and Eq4. Compared to Eq3,
in Eq5, we do not choose all 𝑦𝑖 for loss calculation, but select the
clean 𝑦𝑖 for loss calculation and model optimizing. This indicates
that our GRU model can not just capture the time correlation
information, but more crucially, optimizing on the right step.

2.4 Model Fusion
To provide the robust prediction, we adapt the model fusion to
guarantee the performance around different test phases. 𝐿𝐺𝐵 [𝑎 : 𝑏]
denotes the prediction from 𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀 on timestamp [𝑎, 𝑏). We
design different fusion strategies for different timestamps. This is

index Abnormal conditions
1 NaN in raw data
2 [Patv] < 0
3 [Patv] = 0 & [Wspd] > 2.5
4 [Pab1] >89 | [Pab2] >89 | [Pab3] >89
5 [Wdir] > 180 | [Wdir] < -180
6 [Ndir] > 720 | [Ndir] <-720

Table 1: Abnormal conditions.

Figure 4: GRU Model overview. Left is the encoder part, right
is the decoder part

because different types of models have different strengths. Then,
the prediction after model fusion can be formulated as follow:
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 [0 : 96] = 𝑆2 · (0.8 ∗ 𝐿𝐺𝐵 [0 : 96] + 0.1 ∗𝐺𝑅𝑈 − 𝐹𝐻 [0 : 96]

+ 0.1 ∗𝐺𝑅𝑈 −𝐴𝐿𝐿 [0 : 96]) + 𝑏1
(6)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 [96 : 144] = 0.5 ∗𝐺𝑅𝑈 − 𝐹𝐻 [96 : 144]
+ 0.5 ∗𝐺𝑅𝑈 −𝐴𝐿𝐿 [96 : 144] + 𝑏2

(7)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛[144 : 288] = 𝐺𝑅𝑈 −𝐴𝐿𝐿[144 : 288] + 𝑏3 (8)
𝑆 denotes the adjacency matrix defined in Section 2.2. We propagate
information twice from the neighbor nodes. 𝑏1, 𝑏2, 𝑏3 denotes
the constant bias in our method. We adjust them both in the
offline and online test data. In the following paper, we define
the Postprocessing as adding the bias term and multiplying the
adjacency matrix.

3 EXPERIMENTS
In this section, we will add more details about model training and
serving to improve reproducibility. What is more, we also show
the empirical results of offline and online testing to explain the
motivation of each component of our method.

3.1 Training Details
We use the proposed SDWPF dataset[7] as our training set. SDWPF
dataset contains 134 wind turbines with 35280 data points for
each turbine. The power of each wind turbine is predicted by an
independent group of models. T his is to say, we have 134 groups
of models. Each group contains three models, which contains two
GRU models and one LightGBM model.

3.1.1 LightGBM Training. For LightGBM model training, we
divided the training/validation dataset on a scale of 0.8/0.2. After
generating the training and validation dataset, we grid search the

3
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hyperparameters according to the best performance on validation
dataset. The metric we choose for LightGBM is the L2 Loss Function.
The learning rate is set as 0.05. The𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and𝑚𝑎𝑥𝑙𝑒𝑎𝑣𝑒𝑠 are
3 and 8. The𝑚𝑎𝑥𝑏𝑖𝑛 is set as 30. When the validation performance
does not improve in the 200 iterations, we stopped training early.

3.1.2 Feature Selection for LightGBM. As discussed in Section 2,
we select 4 different columns of features to construct the lag feature.
We treat all the numerical features in one timestamp as the input of
a LightGBM model to fit the power. In detail, the input features are
𝑇𝑢𝑟𝑏𝐼𝐷, 𝑥,𝑦,𝑊𝑠𝑝𝑑,𝑊𝑑𝑖𝑟, 𝐸𝑡𝑚𝑝, 𝐼𝑡𝑚𝑝, 𝑁𝑑𝑖𝑟, 𝑃𝑎𝑏1, 𝑃𝑎𝑏2, 𝑃𝑎𝑏3, 𝑃𝑟𝑡𝑣 .
We also split the whole dataset as 0.8/0.2 for training/validation.
The results are shown on the Table 3.1.3. We design a feature
ablation study to seek the most important features for forecasting
the power of wind turbine. When we take out the direction
feature (𝑊𝑑𝑖𝑟, 𝑁𝑑𝑖𝑟 ), the validation performance decreases a little.
That’s because wind turbines automatically align themselves with
the wind direction. Therefore, we do not need there features.
When we remove the 𝑃𝑎𝑏 features, performance decreases a
lot. 𝑃𝑎𝑏 determines the area of contact between the fan blade
and the wind. However, because the 𝑃𝑎𝑏 of a wind turbine is
adaptive, it is difficult to predict. As for the 𝑃𝑟𝑡𝑣 , getting rid of
it doesn’t have much effect either. If we remove the temperature
features (𝐸𝑡𝑚𝑝, 𝐼𝑡𝑚𝑝), the performance decreases significantly. The
temperature features also have some regularity. Therefore, we
finally select (𝑊𝑠𝑝𝑑, 𝐸𝑡𝑚𝑝, 𝐼𝑡𝑚𝑝, 𝑃𝑎𝑡𝑣) to construct the lag feature.

3.1.3 GRU Training. We have 2 GRU models for each turbine, we
have 134 GRU-FH models and 134 GRU-ALL GRU-models in total.
The configs of the GRU-FH and GRU-ALL are the same. The encoder
is a 1-layer GRU with hidden size equals 96, decoder is the same
as encoder. the decoder is followed by a linear projection head to
transform the GRU output into output space.

For each turbine,we divide the dataset into 214/31 days, the
first 214 days as the training set, and the last 31 days as the
validation set. As discussed in Section 2, we calculate mean and
std statistics among the whole clean data for each turbine. Our
GRU models are trained with the normalized data. To capture
the time correlation information in training phase, we keep
the noisy data. To prevent the model biased by the noisy data,
when optimizing, we construct a clean index set 𝑆 , select clean
data indexes from 𝑆 , and compare the corresponding prediction
with ground truth. For each data point,we select the normalized
𝑊𝑠𝑝𝑑,𝑊𝑑𝑖𝑟, 𝐸𝑡𝑚𝑝, 𝐼𝑡𝑚𝑝, 𝑁𝑑𝑖𝑟, 𝑃𝑎𝑏1, 𝑃𝑎𝑏2, 𝑃𝑎𝑏3, 𝑃𝑟𝑡𝑣, 𝑃𝑎𝑡𝑣 as the
feature.We train our eachGRUmodel with 10 epoches, and use early
stopping strategy by the validation loss.As discussed in Section 2,
the loss function can be formalized as 𝛼 ∗ 𝑟𝑚𝑠𝑒 + (1 − 𝛼) ∗𝑚𝑎𝑒 , in
training phase, we make the 𝛼 equals 0.5. The optimizer is Adam
with weight decay equals 1e-4. The original learning rate is 1e-4,
and the learning rate is divided by 0.5 for each 2 epoches.

3.2 Performance Comparison
In this section, we compare several variants of our methods to
show the effectiveness of each component. We also construct offline
evaluation. We use data from the last 31 days to generate 𝑡𝑒𝑠𝑡𝑥 and
𝑡𝑒𝑠𝑡𝑦 . The metric and test data filtering of offline test are the same
as online test. The results are shown on Table 3.1.3. We choose

Feature Ablation Train’s L2 Valid’s L2
All Feature 3111.79 4839.4
-[Ndir,Wdir] 3900.84 5089.14
-[Ndir,Wdir,Pab1,Pab2,Pab3] 20765.7 9691.74
-[Ndir,Wdir,Pab1,Pab2,Pab3,Prtv] 39849.8 9867.13
-[Ndir,Wdir,Pab1,Pab2,Pab3,Prtv,Etmp,Itmp] 31378.7 16915.2
Table 2: Feature ablation study for LightGBM model.

Model Variants Offline Evaluation Online Evaluation
Baseline GRU Model 37.75 45.52

GRU w/o dp and new loss 37.10 45.16
GRU-Ours 36.50 44.62

LightGBM w/o dp 37.85 45.05
LightGBM-Ours 37.40 45.01

Model Fusion w/o pp and first 144 36.38 44.50
Model Fusion-Ours 36.30 44.48

Table 3: Model variants of our methods. The 𝑤/𝑜
means 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 , 𝑑𝑝 means 𝑑𝑎𝑡𝑎𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, 𝑝𝑝 means
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 and 𝑓 𝑖𝑟𝑠𝑡144 means whether fusion
the GRUmodel which only predicts the first 144 timestamps.

results on Phase 2 as our Online Evaluation. According to the table,
we have following observations:

First, we observe that new loss works on GRU model for both
offline and online evaluation, which indicates the effectiveness of
clean dataset S: for offline evaluation, the performance gain is 1.72%,
and it gets 0.79% improvement in online evaluation. Additionally,
for both GRU and LightGBM model, data pre-processing boosts the
performance of the original model, which verifies that appropriate
feature engineering can help with the prediction: for LightGBM,
the performance gain is 1.19%, and it gets 1.62% improvement for
GRUmodel. Comparing fused model and single model, we conclude
that model fusion could bring about great improvement, and proper
post-processing is also helpful. The final score we got in online
evaluation and offline evaluation is 36.30 and 44.48 respectively.
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