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ABSTRACT
Over the past few decades, the research into wind power prediction
has exploded. As an important clean energy, wind power also has
the characteristics of instability and volatility. Therefore, to ensure
the stable operation of the power grid, it is necessary to effectively
predict the future power generation of wind farms, and then sta-
bilize the influence of wind power fluctuations on the power grid
by using other energy sources. There are still some challenges in
predicting the future power output of wind turbines smoothly and
accurately, such as the large variation in the quality of historical
data of each wind turbine and the increasing error of multi-step
prediction over time. In this paper, we proposed a solution to the
Spatial Dynamic Wind Power Forecasting Challenge at KDD Cup
2022. The task of this competition is to effectively predict the power
generation of 134 wind turbines at the wind farm over the next
two days. Through the analysis of SDWPF data set, we designed
an effective data processing flow, and analyzed the impact of wind
turbine data on the overall wind farm output, and designed a multi-
model hybrid prediction integration scheme. The model consists of
three modules: LightGBM, GRU and Local-Ensemble. We use differ-
ent feature combinations and individualized multi-step prediction
schemes for each model to achieve efficient learning. Finally, the
multi-model multi-step prediction results are mutually corrected to
output the final result. Experiments show that the method proposed
in this paper has obvious advantages in solving the spatial dynamic
wind power prediction problem.
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1 INTRODUCTION
Wind power plays a very important role in power grids around the
world. Wind energy has become an important source of global en-
ergy due to its pollution-free and wide availability[9]. Wind power
forecasting (WPF) aims to accurately estimate the wind supply of
wind farms over different time scales. Accurate and reliable wind
power output prediction technology can provide decision support
for power dispatchers to adjust power generation plans and control
the operation capacity of wind turbines in time. This helps the
power dispatch department to optimize and organize the power
generation scheme, so as to improve the reliability and security of
the power grid[3]. Therefore, WPF is widely regarded as one of the
most critical issues in wind power integration and operation. In
the field of data mining and machine learning, there has been a lot
of research on the prediction of wind power generation. However,
getting WPF right remains a challenge.

• Complete and correct data recording is a powerful guaran-
tee for wind power output forecasting technology. However,
due to some reasons, a large number of outliers appear in
the collected historical data, which brings trouble to cor-
rectly judge the turbine state and the relationship between
characteristics.

• Available data provide very limited useful features. How to
use limited features to extract the hidden feature correlation
and contextual information provided by the turbine location
matrix to extract the correlation between turbines is very
important for the accuracy of turbine power output and the
correlation of power prediction between turbines.

• The longer the time range of wind power multi-step single
output forecasting, the more unknown factors, and the accu-
racy of prediction decreases with the increase of prediction
step. This means that the accuracy of multi-step time series
prediction of wind turbine power generation is challenging
and important.

In order to solve the above problems, this paper deals with ab-
normal data by analyzing data rules and data constraint rules to
reduce the interference of outliers on model stability. Using the con-
textual information provided by the Wind turbine location matrix,
the similarity among turbines was analyzed and the wind turbines
were grouped. In order to better characterize the interaction be-
tween various influencing factors, this paper adopts the method
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of feature engineering to expand the turbine features by capturing
and utilizing the dynamic dependency between multiple variables.
At present, a series of prediction models obtain the global optimal
prediction performance by using the fusion of two or more single
models[7]. In this paper, multiple feature combinations are used,
and different models are used to learn different feature combina-
tions, and differences are constructed through different models,
data, and modeling methods.

The main contributions of this paper are as follows:
• We propose a multi-model integrated framework for wind
power forecasting, which constructs differences by using
different feature sets for different models, Develop a person-
alized multi-step forecasting plan for each model.

• By analyzing the historical data of different wind turbines,
the wind turbines with the most average power output are
selected as the data quality standard, and the multi-step
correction results are output by its model.

• The multi-step results are corrected by using the differences
between the models, and the long-step results are corrected
with the short-step model results to improve the long-term
prediction accuracy.

• Through the analysis of SDWPF data, we identified several
major problems in the task, and grouped them through the
wind turbine matrix from the perspective of data character-
istics. These challenges were solved by data filling, outlier
processing, feature enhancement and other methods.

Figure 1: Illustration of data distribution of each column of
one wind turbine

2 RELATEDWORK
With the rapid development of technology, the demand for wind
energy is huge and growing rapidly. Wind energy has great poten-
tial for energy conversion and will make a significant contribution
to the world’s electricity demand. Wind energy production is very
sensitive to climate variables, such as geographical location, wind
speed, pressure, temperature, wind direction, etc.The patterns of
wind are quite unstable in nature[6]. Therefore, direct statistical
models do not provide accurate predictions.

Some researchers use statistical methods to predict short-term
wind power generation statistical models including the historical av-
erage (HA) method and the autoregressed-moving average (ARMA)

method[2]. ARMA is the most known method based on time series
for predicting the future value of wind power generation. The re-
searchers tried several variations of ARMA (e.g., ARIMA) to achieve
better prediction performance.

With the rapid development of machine learning technology,
many researches on WPF have been carried out with different
prediction methods and different levels. Machine learning is a sub-
division of statistical methods. It can learn patterns from data and
make predictions accordingly[1]. For example, ANN (Artificial Neu-
ral Networks), LightGBM, Decision Tree, Bagging, Random Forest
are widely used to predict the value of wind power generation.

In addition to traditionalmachine learningmodels, extreme learn-
ing and deep learning are also gaining more and more attention in
wind speed and power prediction. These advanced learning mod-
els have higher accuracy and can learn more complex nonlinear
relationships. Yubotao et al.[8] created a model using deep belief
networks. Deep belief networks (DBN) are more accurate at extract-
ing latent rules of wind energy from historical wind farm data.

Figure 2: According to the location of wind turbines, the
closer turbines are divided into a group, and each sub-
diagram shows the average power output of each group in a
single day.

Considering the context information learning of time series,
recursive neural network (RNN) model can extract the explicit time
dependence of sequence learning. Yiwei Fu et al.[4], proposed a
prediction model of RNN based on Gru to improve accuracy. First,
the overall prediction framework of wind power generation and
several optional hybrid models are presented. Using NWP data
and wind speed correction program, a prediction model based on
Gru is established. The results show that Gru model has obvious
advantages.

However, due to the limited performance of the single model
mentioned above, hybrid models combining different technologies
are becoming more and more popular in wind power generation
prediction. By combining the model [5] in the pre-processing or
post-processing stage, the predictive performance of two hybrid
methods is improved. Based on the excellent performance of the hy-
brid prediction method, this paper also adopts the hybrid prediction
method, and adopts the weighting method in the post-processing
stage, assigns a weight coefficient to the prediction of each model
according to the effectiveness of the model, and improves the per-
formance of the final prediction by combining different prediction
methods.
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Figure 3: Mean_Patv vs. TurbID at 245 days wtbdata. Left ten
bars are the ten turbines withmost power output (mean_patv
> 400), and right ten bars are the ten turbines with least power
output (mean_patv < 300).

3 PROPOSED METHOD
3.1 Overview
Fig.4 shows the overall framework proposed in this paper. Based
on the weighted hybrid prediction method, our method designs
three main modules, each of which plays a different role in the
final prediction. In order to obtain better integration results, we use
different feature sets for different models to build differences. Next,
we will introduce our data processing and the details of the three
component models.

3.2 Data Preprocessing
As shown in the Fig.1, we have checked the historical data of 134
wind turbines, in which there are a large number of null values and
outliers, so we need to process the data before starting work. The
data processing part is divided into two parts: data pretreatment
and feature engineering.

3.2.1 Data cleaning and filling.

(1) Abnormal data handling: Filter the abnormal data by setting
the attributes of the abnormal data records other than TurbId
and Day to Nan. The abnormal conditions include:
• Patv<0.
• Wspd<1 and Patv>10
• Wspd<2 and Patv>100
• Wspd<3 and Patv>200
• Wspd>2.5 and Patv==0
• Wspd==0 and Wdir==0 and Etmp==0
• Etmp<-21
• Itmp<-21
• Etmp>60
• ITmp>70
• Wdir>180 or Wdir<-180
• Ndir>720 or Ndir<-720
• Pab1>89 or Pab2>89 or Pab3>89

(2) Group fill: As shown in the Fig.2 , according to the spatial
position matrix of the wind turbine, the closer the distance is,
the more similar the external environment and power output
of the wind turbine will be. We divided 134 turbines into ten
groups according to the principle of proximity. In each group,
the attributes of Nan are populated with the average of other
non-Nan values in that group on the Tmstamp dimension.

(3) The number of Nan Patv of 134 turbine in a day was counted
as NanCount, and the records whose NanCount is less than or
equal to 28, were filled with the records before or after them.
In the original data, the total number of Patv less than 0 or equals

to Nan is 1312580, which is 582716 after the above three steps of
data processing.

3.2.2 Feature engineering.

(1) Normalize the hours and minutes with sin and cos.
(2) Perform a multi-step lag operator on the data column and ex-

pand it into a new column, identified by lag_N.
(3) Perform a multi-step difference operation on the data column

and expand it into a new column, identified by diff_N.
(4) Considering the sensitivity of temperature change to air flow

and wind speed, we average the top n temperature maxima ev-
ery day and add them to the newly expanded column etmp_Max.

3.3 Model
3.3.1 GRU Model. WPF is a typical scenario of sequence mod-
eling, and RNN model is mainly used for sequence prediction,
which urges us to integrate RNN model into our integration. Gru
network is a variant of LSTM network, which has fewer param-
eters and faster training speed. Therefore, this paper selects Gru
to obtain the explicit time dependence of time series. Consider-
ing the impact of data integrity and data quality on the RNN
model, in this module, we train each wind turbine separately and
output an independent model. It is worth noting that we expect
the RNN to learn the hidden associations between its features on
the original features, so in this module we train on the prepro-
cessed data without feature engineering and feature expansion.
As shown in the Fig.4, the GRU module Layer is set to 1, using
multi-step input and multi-step output mode for multi-step pre-
diction. Such as inputs (step:144,step:126„step:108...) and outputs
(step:288,step:252,step:216...), each step outputs a corresponding
model, which is Each wind turbine acquires a number of models
with different output steps.

3.3.2 LightGBM. As an efficient gradient enhanced decision tree,
LightGBM has remarkable ability in processing noise data, making
it a popular choice for wide application. For LightGBM, we first per-
form feature engineering on the preprocessed data (the benchmark
dataset is the result of Section 3.2.1). In addition to normalizing the
time, we perform multi-step lag operator operations on the data
columns, and generate the corresponding extended column col-
umn_lag_N for each column(𝑁 ∈ [1, 6]).At the same time, perform
multi-step difference operations on the data columns, and generate
corresponding extended column column_diff_N (𝑁 ∈ [1, 6]) for
each column, and establish the relationship between historical time
points and current data through these two operations. Different
from the GRUmodule, the LightGBMmodule uses the full data of all
wind turbines for training, and does not target a single turbine.As
shown in the Fig.4, LightGBM adopts a multi-step output strategy,
setting the step size to 1, and predicting the next 288 pieces of data
in turn through the loop, thereby generating 288 LightGBM models.

3.3.3 Local Ensemble. In order to better characterize the interac-
tion between all influencing factors, and to construct the difference
by modeling different models using different feature groups, we
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Figure 4: Schematic diagram of the proposed model, which includes LightGBM, GRU Model, and Local-Ensemble model.

designed a local-Ensemble module.As shown in the Fig.4,It con-
tains LinearRegression, PolynomialFeatures + LinearRegression,
and local_Gru units.

• LinearRegression: It has better generalization ability for
unstable prediction in the future, especially formean-distributed
data.We first perform feature engineering on the prepro-
cessed data (the benchmark dataset is the result of Section
3.2.1). In addition to normalizing the time, unlike the Light-
GBM module, here we consider the sensitivity of temper-
ature changes to airflow and wind speed, average the first
6 maximum temperature values per day, and add them to
the newly expanded column Etmp_Max; and use the maxi-
mum value in the 7*144 Etmp_Max data to fill the null val-
ues with the following data. We then perform multi-step
lag operator operations on the data columns, and generate
the corresponding extended column column_lag_N for each
column(𝑁 ∈ [1, 12]).At the same time, perform multi-step
difference operations on the data columns, and generate cor-
responding extended column column_diff_N (𝑁 ∈ [1, 12])
for each column, and establish the relationship between
historical time points and current data through these two
operations. And fuse the 288 Patv data after the current row
to the current row. For the LinearRegression model, we use
the whole station data for full training, and finally output a
full model.

• PolynomialFeatures + LinearRegression: It has a good
fitting ability for ultra-short-term (within 3.5 hours) predic-
tion. We use the same feature engineering as LinearRegres-
sion, and also use full-scale training with full-scale data, and
finally output a full-scale model.

• local_Gru: local_Gru uses the preprocessed data, uses the
same temperature feature expansion as LinearRegression,
and performs one-hot encoding on the turbine ID. Local_Gru
uses two layers of gru layers, and uses the full data to using
multi-step input and multi-step output mode for multi-step
prediction, such as inputs (step:144,step:72,step:36...) and
outputs (step:288,step:144,step:36...), each step outputs a cor-
responding full model.

3.4 Ensemble Methods
The hybrid prediction method combines different prediction meth-
ods to improve the performance of the final prediction. The perfor-
mance of a single model is limited in many cases. Hybrid forecasting
methods combine the ability of multiple models to better accommo-
date changes in the sample by setting the results of each model in
combination. For time series forecasting, the closer the time is to the
starting point, the more accurate the forecast, and the error will be-
come larger as the forecast step increases. Considering this feature,
we propose a multi-step correction scheme.As introduced in the
Section 3.3, we use the multi-step multi-model training method in
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model training to generate multiple models with different step sizes,
and use multiple short-step model results to correct the long-step
results to make the tracking results more accurate.

For example, in GRU MODEL, we use the step size to predict in
order from small to large, and use the short-step prediction in turn
to correct the prediction result of the previous step. For example,
if the output with a step size of 36 is used to correct the output
with a step size of 72, the output of the nearest 36 steps of the two
predictions is averaged, and then the difference is made to obtain the
difference between the long-term and short-term predictions.Then
use the difference to correct proportionally for the last 36 steps
with the step size of 72. The specific formula is as follows:

𝑀𝑖 =𝑚𝑒𝑎𝑛(𝑃𝑖 [0 : 𝑠𝑡𝑒𝑝𝑖 ]) (1)

𝑀𝑖+1 =𝑚𝑒𝑎𝑛(𝑃𝑖+1 [0 : 𝑠𝑡𝑒𝑝𝑖 ]) (2)

𝑃 [𝑠𝑡𝑒𝑝𝑖 : 𝑠𝑡𝑒𝑝𝑖+1] = 𝑃𝑖 [𝑠𝑡𝑒𝑝𝑖 :] − 𝜎 (𝑀𝑖+1 −𝑀𝑖 ) (3)
𝜎 is the correction factor.i represents the model, step represents the
step size of the model output and 𝑠𝑡𝑒𝑝𝑖 ∈ (12, 36, 72, 144, 180, 𝑒𝑡 .𝑎𝑙)

The LightGBM module performs multi-step result correction in
the same way as the GRU Model.

The LightGBM module performs multi-step result correction in
the same way as the GRU Model. In Local-Ensemble, we first make
the first 22 predicted by PolynomialFeatures + LinearRegression
to modify the first 22 predicted by LinearRegression. And pass the
corrected LinearRegression result 𝑃𝑙 as the transmission, like:

𝑃𝑙 [: 22] = 𝑃𝑝 [: 22] (4)

And then use the same multi-step result correction method as GRU
Model to correct by increasing the step size by 4.In addition, for
the prediction results of local_gru, we take the average of the first
144-step prediction and the last 144-step prediction, and make the
difference, and use the difference to correct the last 144-step pre-
diction through the proportional coefficient.

In the weighting method, we assign a weight coefficient to the
prediction of eachmodel according to the effectiveness of the model,
and fine tune the weight through experiments to achieve better
results. The weight distribution in Local-Ensemble is as follows:

𝑃𝑙𝑒 = 𝜔 ∗ 𝑃𝑙 + (1 − 𝜔) ∗ 𝑃𝑙_𝑔𝑟𝑢 (5)

where 𝑃𝑙𝑒 represents the prediction result of Local-Ensemble mod-
ule, 𝑃𝑙 represents the prediction result of LinearRegression, and
𝑃𝑙_𝑔𝑟𝑢 represents the prediction result of local_gru module. We set
𝜔 = 0.59.

The overall architecture weight distribution is as follows::

𝑃𝑓 𝑖𝑛𝑎𝑙 = 𝜔1 ∗ (𝜔2 ∗ 𝑃𝑔𝑟𝑢 + 𝜔2 ∗ 𝑃𝑙𝑔𝑚) + 𝜔3 ∗ 𝑃𝑙𝑒 (6)

where 𝑃𝑔𝑟𝑢 represents the prediction result of Gru module, 𝑃𝑙𝑔𝑚
represents the prediction result of LightGBM module, and 𝑃𝑙𝑒 rep-
resents the prediction result of local ensemble module. We set
𝜔1 = 0.75,𝜔2 = 0.5 and 𝜔3 = 0.25.

4 EXPERIMENTS
In this experiment, the 245 day data set is used as the benchmark to
divide the training set and the verification set, and the multi model
is used for training. Then, the reasoning results of each training
model are fused and modified. Finally, the final output result is

obtained by weighted combination of the modified data according
to a specific proportion.

4.1 Datasets
The data set provided contains 134 wind turbines, and each wind
turbine contains 245 days of data. The test and evaluation data set
contains 14 days’ data of 134 wind turbines, which is used to predict
the output data of each wind turbine every 10 minutes in the next
two days.

4.2 Metrics
Predict the output value of each wind turbine in the next 48 hours
and 10 minutes, that is, predict a wind power time series with a
future length of 288. The average value of RMSE (Root Mean Square
Error) and MAE (Mean Absolute Error) is used as the evaluation
index. The evaluation index formula of each wind turbine is:

𝑠𝑖𝑡0 =
1
2
(

√√∑288
𝑗=1 (𝑃𝑎𝑡𝑣𝑖𝑡0+𝑗 − 𝑃𝑎𝑡𝑣

𝑖
𝑡0+𝑗 )2

288
+
∑288

𝑗=1 |𝑃𝑎𝑡𝑣
𝑖
𝑡0+𝑗 − 𝑃𝑎𝑡𝑣

𝑖
𝑡0+𝑗 |

2

288
)

(7)
According to the evaluation index score of each wind turbine,

calculate the total score index of 134 wind turbines:

𝑆𝑡0 =

134∑︁
𝑖=1

𝑠𝑖𝑡0 (8)

4.3 Model Training
4.3.1 linearregression. The data of the first 225 days were used
as the training data set, and the last 20 days were used as the
verification data set. The current data and the past 12 data after the
fusion feature processing are used as input X, and the Patv data
of the future 288 data are used as label Y. The LinearRegression is
used for model training.

4.3.2 polynomialfeatures + linearregression. The data of the first
225 days were used as the training data set, and the last 20 days
were used as the verification data set. Take the current features
(’Wspd’,’Etmp’,’Patv’) and the past 2 data after data feature process-
ing as input X, and the Patv data of the future 288 data as label
Y. The Pipeline([(’poly’, PolynomialFeatures(degree=4)), (’ Linear ’,
LinearRegression())]) is used to perform quadratically polynomial
fitting + linear regression for model training.

4.3.3 LightGBM. The data of the first 224 days were used as the
training data set, and the last 21 days were used as the verification
data set. The current data and the past 6 data after fusion feature
processing were used as input X, and each Patv data of the future
288 data was used as label Y. The 288 models were successively
trained by LightGBM.

4.3.4 GRU of PaddlePaddle. The data of the first 225 days after
feature engineering were used as the training data set, and the last
20 days were used as the verification data set. The GRU network
based on PaddlePaddle framework is used to train single turbine
multi-step independent training model (GRUModel) and all turbine
data to a large model (local_gru).
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4.4 Performance Comparison
Model ensemble is a commonmethod to improve model accuracy in
algorithmic competitions. Sometimes dozens or even hundreds of
models are put into service in the late stages of intense competition.
We design a hybrid forecasting method by combining different fore-
casting methods to improve the performance of the final forecast.
Through continuous in-depth research and experiments, as shown
in Fig.3, we found that the power output data of each turbine in
the wind turbines matrix is quite different. Using the 245-day data
set to calculate the average Patv of each site. The higher average
power outputs are 1, 6, 11, 3, and 5, and the average output value is
greater than 400, while the sites with the lower output value have
an average output value of less than 300. This big difference shows
that the location and the operating conditions of wind turbines
have a big effect on the power output.

Based on the assumption that, the higher the Patv is, the wind
power output is closer to the theoretical work. This is subject to
less mechanical adjustment and fewer outliers by the turbine itself.
At the same time, it is difficult to predict the mechanical adjustment
and abnormal conditions. Therefore, we select the wind turbines
with the highest wind power output to train the models and use
their predictions to represent the output of other turbines. We have
tried top15, top10, top5 and top1, finally we found that top5 had
the best fit. Maybe top4 or top6 would be better than top5, but we
do not have enough time to find the optimal topN. We tested our
assumption on both Phase2 and Phase3. Therefore, we only use
the five best-performing turbine models to predict, and rectify the
results using the multi-step correction method described in section
3.3.1. Finally, we averaged the five corrected prediction results to
cover all other turbines.

At LightGBM model, we finally choose the model with step
size in (2, 4, 6, 12, ...) for prediction, and perform multi-step result
correction. In Local-Ensemble, we usef local_gru to predict turbine
No.1, and use the prediction results as the prediction results of each
turbine. The specific correction method has been introduced in
Section 3.3. Through quantitative comparison, our solution is in the
process of optimization, and the performance results are constantly
improving. We have recorded the module combination submission
process as fellows:

Table 1: Comparison of Schemes

Score Models Schemes

-45.15699 LightGBM + GRU A
-45.12303 LightGBM + GRU B
-45.10273 LightGBM + GRU + Local-Ensemble C
-44.92340 LightGBM + GRU + Local-Ensemble D

The details of each scheme are as fellows:
(A) LightGBM + GRU, GRU uses top 10 turbine models to predict,

and the results of LightGBM and GRU rectified by one step
(B) LightGBM + GRU, GRU uses top 10 turbine models to predict,

and rectifies the results by multi-step, at the same time, the
results of LightGBM rectified by one step

(C) LightGBM + GRU + Local-Ensemble, based on the previous
one, Local-Ensemble model is incorporated

(D) LightGBM + GRU + Local-Ensemble, the difference from previ-
ous ones, is that GRU use top 5 turbine models to predict, and
the results of LightGBM and GRU both rectified by multi-step

5 CONCLUSIONS
In this paper, we introduce our work on Spatial Dynamic Wind
Power Forecasting for KDD Cup 2022. We achieved excellent results
through data processing, feature design and multi model mixed pre-
diction. In the 2490 team competition, we won the second place and
we are only 0.006 behind the first place. It is worth pointing out that
the competition only provides data elements such as wind speed,
temperature and turbine angle. However, different geographical
locations and weather changes have a great impact on atmospheric
circulation, pressure and real-time wind speed. These factors have
a direct impact on the power output of future turbines. Therefore,
wind field coordinate information and weather forecast informa-
tion can be added, which will be of great help to the accuracy of
long-term and short-term turbine power prediction. In the future,
we will also continue to improve our solution, integrate multiple
models into a single model, reduce the number of models, simplify
the complexity of training and practical applications. And continue
to explore the coefficient adjustment of multi-model mixed predic-
tion, and explore more effective time series problem processing
methods.

REFERENCES
[1] Hanieh Borhan Azad, Saad Mekhilef, and Vellapa Gounder Ganapathy. 2014. Long-

term wind speed forecasting and general pattern recognition using neural net-
works. IEEE Transactions on Sustainable Energy 5, 2 (2014), 546–553.

[2] George EP Box and David A Pierce. 1970. Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models. Journal of the
American statistical Association 65, 332 (1970), 1509–1526.

[3] Niya Chen, Zheng Qian, Ian T Nabney, and Xiaofeng Meng. 2013. Wind power
forecasts using Gaussian processes and numerical weather prediction. IEEE Trans-
actions on Power Systems 29, 2 (2013), 656–665.

[4] Yiwei Fu, Wei Hu, Maolin Tang, Rui Yu, and Baisi Liu. 2018. Multi-step ahead
wind power forecasting based on recurrent neural networks. In 2018 IEEE PES
Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 217–222.

[5] Inci Okumus and Ali Dinler. 2016. Current status of wind energy forecasting and
a hybrid method for hourly predictions. Energy Conversion and Management 123
(2016), 362–371.

[6] S Preethi, H Prithika, M Pramila, and S Birundha. 2021. Predicting the Wind
Turbine Power Generation based on Weather Conditions. In 2021 5th International
Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE,
132–139.

[7] Saurabh S Soman, Hamidreza Zareipour, Om Malik, and Paras Mandal. 2010. A
review of wind power and wind speed forecasting methods with different time
horizons. In North American power symposium 2010. IEEE, 1–8.

[8] Yubo Tao, Hongkun Chen, and Chuang Qiu. 2014. Wind power prediction and
pattern feature based on deep learning method. In 2014 IEEE PES Asia-Pacific Power
and Energy Engineering Conference (APPEEC). IEEE, 1–4.

[9] Ryan Wiser, Eric Lantz, Trieu Mai, Jose Zayas, Edgar DeMeo, Ed Eugeni, Jessica
Lin-Powers, and Richard Tusing. 2015. Wind vision: A new era for wind power in
the United States. The Electricity Journal 28, 9 (2015), 120–132.


	Abstract
	1 Introduction
	2 RELATED WORK
	3 PROPOSED METHOD
	3.1 Overview
	3.2 Data Preprocessing
	3.3 Model
	3.4 Ensemble Methods

	4 EXPERIMENTS
	4.1 Datasets
	4.2 Metrics
	4.3 Model Training
	4.4 Performance Comparison

	5 CONCLUSIONS
	References

