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ABSTRACT

Nowadays, wind energy has drawn increasing attention as its impor-
tant role in carbon neutrality and sustainable development. When
wind power is integrated into the power grid, precise forecasting is
necessary for the sustainability and security of the system. However,
the unpredictable nature and long sequence prediction make it espe-
cially challenging. In this technical report, we introduce the BERT
model applied for Baidu KDD Cup 2022, and the daily fluctuation is
added by post-processing to make the predicted results in line with
daily periodicity. Our solution achieves 3rd place of 2490 teams.
The code is released at github.com/LongxingTan/KDD2022-Baidu
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1 INTRODUCTION

Wind energy plays an important role in carbon neutrality. The pre-
cise prediction of wind power can help its integration into the power
system with sustainability and security of supply [4]. However, the
unpredictable nature of wind makes it challenging, especially for
long sequence forecasting.

Transformer models are proposed for long sequence forecasting
in recent research [12]. To utilize the advantage of its capturing
long dependencies, we implement a BERT model for wind power
future prediction. Our solution is a single model with a single BERT
block, with both accuracy and efficiency.

1.1 Dataset

A unique spatial, dynamic wind power forecasting dataset-SDWPF
[19] is provided by Baidu and Longyuan for this competition. The
training data consists of 245-day records for 134 turbines. Its interval
is 10 minutes. Additionally, each sample has wind speed, wind
direction, relative power, the temperature, in total ten parameters.
The procedures of data preprocessing are introduced in Section 4.1.

1.2 Task

Given at most 14-day historical data, participants need to predict the
future 2 days’ wind power for every turbine and every 10 minutes.
There are 142 samples provided in the last phase to evaluate the
model performance, and each sample is randomly sampled over
several months. Inference on the test data needs to be finished in
10 hours in the online environment.
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1.3 Evaluation

The performance is measured by the average of RMSE (root mean
square error) and MAE (mean absolute error) for each turbine as
metrics score. There are some invalid values in ground truth labels
such as zero values, missing values, and unknown values. Based on
the task description, the metrics score for those invalid values in
ground truth is set to zero to ignore them.

2 RELATED WORK

There is already a long history of wind power forecasting. The
mainstream approaches include the physical approach, statistical
approach and the ensemble approach [5]. The physical approach
uses the meteorological service and numerical weather prediction
to predict the future in a short.

The statistical approach builds a model using statistical methods.
The commonly used time series prediction methods include ARIMA,
statistical models[1], and deep learning methods [9]. Besides, now
the long sequence time series forecasting also catches lots of at-
tention from the real-world requirements. Recently, the prediction
capacity is increased by the latest transformer family, such as the
Informer [17] and Autoformer [13] model. Informer uses the sparse
attention and one-time decoder to accelerate the inference. The
Autoformer uses a decomposition method and frequency domain
attention to improve its capacity in long sequence prediction. The
spatial-temporal approach is also a promising way for wind power
forecasting [6]. The spatial information can be used to improve the
forecasting accuracy [3]. So batches of new models are proposed
and achieve good results with the development of graph neural net-
works, like GCN-LSTM, Graph Wavenet [15], Graph Convolutional
Network [8] and Graph Attention Network [18].

3 SOLUTION OVERVIEW

In this section, we explain the main components of our solution.
The overall architecture of our method is shown in Figure 1.

We implement two pipelines to treat the problem either as a
multi-step time series prediction or a spatial-temporal prediction.
What’s more, we can choose to predict the generated wind power
directly or to predict the wind speed first and then transfer it into
wind power[11]. Besides we tried training different time scale mod-
els to handle the long sequence prediction.

When it comes to a time series task, each turbine can generate
its samples independently. Because the whole wind farm has a
very similar trend, the time series model can capture the long-term
seasonality better for long sequence prediction. We tried KNN,
LightGBM, RNN, TCN, BERT, Seq2seq, Wavenet, and Transformer
models.
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Figure 1: Solution architecture

When it comes to a spatial-temporal task, the promising models
are like GCN-LSTM, ConvLSTM [7], GraphWavenet [14], Graph
Transformer [16] and spatial CNN models. If spatial information
and spatial distribution could be captured, it’s assumed to be helpful
for future prediction as well [10].

4 DETAILED METHOD

4.1 Data preprocessing

We create the samples for each turbine every 10 minutes by sliding
the window to get more training data. There are NANs and invalid
values in the data. We use the corresponding previous value to fill
them for training and inference. And we use a min-max scaler to
standardize the features into scope between zero and one, but leave
the target column alone.

4.2 Features

To avoid over-fitting, we try to use as fewer features as possible.

The commonly used lag features, rolling features, and time features
are not helpful according to our experiments. The temperature is
noisy, so the temperature feature is not involved.

Given the unpredictable nature, it’s hard to predict the future
trend and seasonality perfectly. So we try to add spatial information
and temporal information as features to improve the prediction
performance. But they are not helpful in our experiments. So finally
we only choose the wind speed and wind direction to train the
model.

4.3 Models

We choose a single BERT model [2] as our final model to handle the
long dependencies for long sequence prediction. The BERT model

has been widely used in all tasks in natural language processing
since its publication. In computer vision, speech, and time series,
it has also been widely investigated and it achieves fruitful results
since then. The detailed model structure we use is shown in Figure
2.

A token embedding layer without positional encoding can project
the raw feature space into the attention space. The experiments
show there is not a significant influence having positional encoding
or not. The module following the embedding layer is a standard
BERT encoder, with self-attention layer, feed-forward network,
layer normalization and residual connection. Then 3 dense layers
with dropout can capture the crossed information from time and
features. The hidden sizes of the last dense layer are equal to the
predicted steps 288. And our experiments show that layer normal-
ization and residual connection are both important that can’t be
ignored. The detailed model configuration is shown in Table 1.

4.4 Training

We use a GTX 1080Ti for training our models, and the BERT model
costs about 90 minutes. An RMSE loss function and Adam optimizer
are used for training as shown in Table 2.

4.5 Post-processing

A series of post-processing strategies are employed to further im-
prove forecasting accuracy. We know it’s important for better pre-
diction to capture the trend, seasonality, and spatial information.
However, we find our forecasting results don’t have obvious daily
periodicity, while the descriptive analysis in historical data shows
it’s strong for most days. So we propose two ways to solve it. The
first one is to add the daily fluctuation by post-processing. The
daily average fluctuation is calculated and added to the prediction
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Figure 2: BERT model structure

Table 1: BERT model configuration

Hyper-parameters Value
Train sequence lengths 288
Predict sequence lengths 288
Number of encoder layers 1
Attention hidden sizes 32
Number of attention heads 1

Attention drop out rate
Feed forward layer hidden sizes 32

Feed forward layer dropout rate 0
Densel hidden sizes 512
Densel dropout rate 0.25
Dense2 hidden sizes 1024
Dense2 dropout rate 0.25
Dense3 hidden sizes 288

Table 2: Training configuration

Training parameters Value

Batch sizes 1024
Training epochs 3
Learning rate 0.005
Optimizer Adam

result directly. The second way is to optimize the model to make
the model learn the daily fluctuation by itself, in which the time or
wind information information is added as the decoder feature to
decode the BERT output further. In the end, the latter methods in
models are not as good as the first way in our experiments.

To give more details, we calculate the average wind power for
every interval. Then the daily sequence is standardized to zero and

one. Because the wind power is between 0 and 1620, a multiplier
of 36 is chosen to magnify it according to local validation and the
leaderboard. The multiplier could force the daily fluctuation to
influence the predictions in a reasonable scope. For larger values,
we further magnify them by multiplying a constant value like 1.1.
Finally, the daily fluctuation sequence needs to match the predicted
start time by shifting it, as not all predictions start from 00:00. In this
way, the predicted future sequence could reflect the daily period
with the same daily fluctuation level with historical data.

5 EXPERIMENT
5.1 Validation strategy

There are 3 phases of online test data in the competition, with a
temporal relationship. So we leave a gap between offline training
data and validation data to simulate this scenario. The training
data we choose is between the 1st and 181st day, and the offline
validation data is between the 231st and 245th day as shown in
Figurel.

Considering we use 250982 valid samples as local validation,
while the online test data use only 150-200 samples, we submit the
model unless the local validation score is improved to decrease the
risk of shaking down. Because the concept drift issue occurs for
time-related task, in the last phase, we modified the model based
on our best model in the second phase.

5.2 Results and comparison

In this section, we compare the different models’ performances
from our experiments. The results of the time series model and
spatial-temporal model are shown in Table 3. To make the local
validation comparable with the leaderboard, the MAE, RMSE and
metrics scores are transferred to the sum of 200 samples’ results.
We can see that the deep learning methods behave better than
statistical learning methods like KNN or LGB in our experiments.
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Table 3: Performance comparison of models

Model Local MAE Local RMSE Local score Leaderboard score (phase II)

BERT 299 365
LSTM 305 369
TCN 310 371
KNN 316 368
LGB 319 386
Transformer 311 374
Seq2seq 296 366
Wavenet 306 370
GCN-LSTM 228 362

58.1 44.6
58.9 44.8
59.4 45.1
60.6 unsubmit
61.4 unsubmit
60.0 48.5
57.6 47.1
59.1 47.9
54.5 48.2

The wind power data is homogeneous, without important categori-
cal information or crossed information, so the deep learning model
can handle this task very well. The spatial information definitely
could help more accurate predictions. As for the spatial relationship,
we tried the spatial-temporal models to capture the spatial relation-
ship automatically, but our implementations are not so successful
in the leaderboard. Now that every turbine’s power trend is quite
similar, we focus more on its temporal properties afterward.

6 CONCLUSION AND FUTURE WORK

In this technical report, we introduce our BERT solution for Baidu
KDD Cup 2022 wind power forecasting. The BERT model can pre-
dict the primary trend for the long sequence prediction, and the
daily fluctuation is added by post-processing to make the prediction
with daily periodicity. Though the single BERT model is accurate
and efficient, it can still be enhanced in many ways like transfer
learning or the graph model.
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