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ABSTRACT

In this paper, we briefly introduce the solutions of our team ‘zhang-
shijin’ for the Spatial Dynamic Wind Power Forecasting Challenge
in Baidu KDD CUP 2022. Given the spatial distribution of wind
turbines and dynamic environmental factors such as time, weather,
etc., in the past, the competition aims to predict the wind power
generated by wind turbines in the future. The volatility of power
generation and the long forecast time are huge challenges for this
mission. To address these issues, we propose a series of methods,
which includes abnormal data cleaning based on the wind power
curve, effective selection and construction of features, wind tur-
bines’ coding of spatio-temporal graph neural network, WPFormer
model, POPtree, and two model fusion strategies. Both online and
offline, our method achieves effective and powerful improvements.

CCS CONCEPTS

- Computing methodologies — Artificial intelligence; Ma-
chine learning,.

KEYWORDS

wind power curve, graph neural network, auto-correlation, spatio-
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1 INTRODUCTION

The use of wind power, a pollution-free and renewable form of
energy, to generate electricity has attracted increasing attention in
recent years. However, intermittent electricity generation resulting
from the stochastic nature of wind speed poses challenges to the
safety and stability of electric power grids. For the efficient use of
wind energy, Wind Power Forecasting (WPF) has been widely rec-
ognized as one of the most critical issues in wind power integration,
and it aims to accurately estimate the wind power supply of wind
farms at different time scales.

In recent years, there has been an explosion of research into
wind power prediction [14, 17, 18]. However, dealing with the WPF
problem is still quite challenging because of the stochastic nature
of wind speed and the complexity of turbine properties and status,
but also it requires high prediction accuracy to ensure grid stability
and supply security.

For WPF, traditional statistical models include autoregressive
moving average (ARMA) [8], autoregressive integrated moving
average (ARIMA) [27], and so on. These time series models show
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good performance in short-term WPF, but their long-term forecast-
ing ability is poor. With the rise of machine learning, many new
methods have been proposed and applied to WPF, e.g., support
vector machine (SVM) [4], multi-layer perceptron (MLP) [9] and
LightGBM [10]. With the development of deep learning technology,
deep neural networks, including long short-term memory (LSTM)
[12], convolutional neural network(CNN) [26], transformer [15], etc.
have attracted greater attention in WPF due to their superior capa-
bility in dealing with complex nonlinear problems. Furthermore, in
many previous studies, deep learning-based models usually showed
better forecasting performance than traditional statistical-based
models [23].

However, most existing datasets and models treat WPF as a time
series prediction problem without knowing wind turbines’ loca-
tions and context information. The KDD CUP presented a unique
Spatial Dynamic Wind Power Forecasting dataset: SDWPF [29],
the real-world data from Longyuan Power Group Corp. Ltd. (the
largest wind power producer in China and Asia). This dataset has
three main features: 1) Spatial distribution: the relative locations
of all wind turbines given a wind farm for modeling the spatial
correlation among wind turbines. 2) Dynamic context: the weather
situations and internal turbine status detected by each wind turbine
to facilitate the forecasting task. 3) Abnormal data: since the data
comes from real data, there are a large number of outliers. It will
also be a big challenge to eliminate the interference of outliers in
the model.

Based on the above problems, we propose the following solutions
to solve them.

e Firstly, abnormal wind power data may be caused by unstable
sensors and equipment damage. The power generation and
wind speed align with the S-curve distribution, and the data
cleaning is completed for each wind turbine according to
this distribution.

e Secondly, different features in the dataset have different ef-
fects on the results. Some features have positive effects, and
some features may have adverse effects. In response to this
phenomenon, we conduct feature correlation analysis, ex-
clude features with poor correlation, and construct some
new highly-correlated features.

Thirdly, we design the WPFormer to use 1D convolutional

neural networks and graph neural networks to encode the



KDD Cup ’2022, July, 2022, CN

temporal and spatial information of the wind turbine, re-
spectively. Sequence-level learning is accomplished through
progressive sequence decomposition and auto-correlation
mechanisms.

e Finally, to improve model generability, we design point-by-
point prediction based on the tree model using auxiliary
wind turbine and data downsampling techniques, leveraging
newly constructed statistical features. For different models,
we used two model fusion methods.

The rest of this paper is arranged as follows. In Section II, we
briefly introduce the related work. The structure of the proposed
methodology is detailed in Section III. The comparison experiment
results are reported in Section IV. Section V summarizes this paper.

2 RELATED WORK
2.1 Statistical-Based Wind Power Forecasting

Most early studies used statistical methods to model weather data
and make predictions of wind power. So wind speed is first used to
predict wind power as the most direct influencing factor. Brown et
al. [3] built an Autoregressive Moving Average (ARMA) model to
predict wind speed by exploiting basic features such as autocorrela-
tion and diurnal nonstationarity. Then wind power is formulated as
a function of wind speed so that the wind power can be estimated
directly by applying transformations to wind speed data. Due to
the high correlation between wind speed and wind power, many
wind speed prediction methods have been developed. Firat et al.
[7] predicted wind speed data by independent component analysis
(ICA). Mohandes et al. [16] used support vector machines (SVM)
to model wind speed. In addition to wind speed, many other fac-
tors (e.g., geographic location, wind direction) can also affect wind
power. Alexiadis et al. [2] investigated the spatial correlation of
wind speeds and developed a statistical learning model for wind
power forecast. Combined with historical power data of the wind
farm, Sideratos et al. [19] exploited forecasts of wind speed and
direction and proposed an advanced statistical method for wind
power forecast. Even though there are so many studies and efforts
on the statistical methods to predict wind power, the substantial
uncertainties in the weather data, such as wind speed, potentially
undermine the linear or nonlinear relationships based on statisti-
cal methods, which can only make short-term predictions and is
incompetent for long-term predictions.

In order to improve the performance of long-term forecasts,
some more sophisticated statistical models are adapted. Ahmadi [1]
developed a XGBoost model. Their results show that the tree model
can perform well for long-term wind power prediction, especially
for modeling wind power in different geographical locations. Thus,
we propose a novel point-by-point prediction method based on the
tree model.

2.2 Deep Learning-Based Wind Power
Forecasting

Since deep learning methods show the superior capability to un-
cover fairly complex inherent correlations, many researchers work-
ing on wind power prediction have shifted their focus to them.
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Wang et al. [22] developed a novel wind power prediction frame-
work based on convolution neural network (CNN) and wavelet
transform. According to the experiment results, their model is
robust against noisy data and achieves competitive performance
on several real wind farm datasets. Song et al. [20] proposed a
combined model based on generalized regression neural network
(GRNN). Yu et al. [25] built an improved long short-term memory
(LSTM) model and performed spectral clustering to optimize the
forecasting effect further.

In recent years, an outstanding deep learning model called trans-
former [21] has emerged and achieved great success in long-term
sequence prediction tasks. Inspired by the transformer, a series
of new models and mutants have been studied. Informer [28] im-
proved the self-attention block of the transformer, thus effectively
capturing the exact long-range dependency coupling. Autoformer
[24] proposed a new decomposition structure that helps the model
to asymptotically decompose complex time series, thus significantly
outperforming other methods on multiple long-range time series
forecasting tasks. Likewise, FEDformer [30] proposed a model based
on Transformer and the seasonal-trend decomposition methods, in
which the decomposition method captures the global information
of time series while Transformers capture detailed structures. How-
ever, there has been no extensive study of transformers or their
many different variants in wind power prediction so far. The great
success of transformers in sequence modeling and prediction has
shown their great potential in this field, which has inspired us to
develop a wind power forecasting model based on the transformer.

3 METHODLOGY

3.1 Data Engineering Based on Wind Power
Curves

Data quality is the foundation of data science and machine learning,
especially for data competitions. We first analyze the anomaly of the
dataset, such as missing data, unknown data, and other singularities,
by performing anomaly detection according to the wind power
curve. And then perform the data processing to deal with these
anomalies.

Data Analysis According to the data description from the orga-
nizing committee, the singular data can be divided into four cate-
gories: missing, zero-valued, unknown, and abnormal. By analyzing
the 4,727,520 pieces of data in the training set, the proportions of
the four kinds of data are counted, as shown in Table 1 below. After
analyzing the table, we can draw two important conclusions. First,
the proportion of data with problems is as high as 28.64%, which
means that there are problems in nearly one-third of the data, which
will bring significant challenges to the correct learning of the model.
Second, the union of missing data, unknown data, and abnormal
data accounts for 22.89% of the total data, which will not be used
for score evaluation. Considering the similar distribution between
the training dataset and test dataset, there should be an equivalent
proportion of data on the test dataset that will not be used for score
evaluation. Similar to the mask operation of the score, the position
of the dataset on the test set that will not be used for evaluation
is relatively random, and this random operation will cause greater
volatility between online and offline scores, which has also been
verified in this competition.
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Table 1: Problem Data Situation

Data Type Proportion(%) Contents
Missing values 1.05 NULL

Zero values 26.72 Patv < 0or Pritv< 0
Unknown values 1 6.33 Patv < 0 and Wspd > 2.5
Unknown values 2 20.83 Pab1 > 89° or Pab2 > 89° or Pab3 > 89°
Abnormal values 22.89 Ndir > 720° or Ndir < —720° or Wdir > 180° or Wdir < —180°

Mask values 22.89 The union of missing values, unknown values and Abnormal values.

Total values 28.64 The union of all the above.

Anomaly Detection In practical application scenarios, wind
power data can be subject to signal interference or equipment
failure in the process of collection and transmission. In addition,
the grid sometimes has insufficient capacity to accept strong wind
power, and excessive power will be abandoned. The above reasons
result in some inevitable errors during wind power data collection,
which generates anomaly data, as counted in the data analysis
section. If we use the anomaly data to train the machine learning
model, the model’s accuracy will decrease in the inference phase.
Thus, we need to detect the anomaly data in pre-processing stage
and remove or fix them.

In terms of mathematical modeling, the power generated is posi-
tively proportional to the cubic of wind speed measured, as shown
in the following equation:

1
P= EcppAzﬁ, (1)

where P is the power generation, Cp and A denote the wind energy
utilization coefficient of the wind turbine and the impeller swept
area, respectively; p is the air density, and v is the actual wind
speed.

If drawing data on a scatter plot with wind speed as the x-axis
and power generation as the y-axis, the data distribution is roughly
S-shape. The data that deviate too much from the S-shaped distri-
bution are considered anomalies, which data mining algorithms
can detect according to the distribution. In this competition, we
use the isolation forest [13] algorithm to identify these outliers.
The isolation forest algorithm randomly selects feature values by
dividing data, and sparsely distributed outliers are more likely to be
picked out. Wind power curves are drawn by selecting turbines 1
and 2 from 134 wind turbines. Figure 1 shows the result of anomaly
detection, where orange and blue dots denote anomaly and normal
data, respectively.

In the competition, we need to use the historical power gener-
ation series to predict the future power generation series. Thus,
the anomaly data in the training data cannot be deleted directly;
otherwise, the historical series is incomplete. To fix the anomaly
data, we use LightGBM [11] model with wind speed as the input to
predict the power generation.

Data Cleaning After the anomaly detection, we continue to deal
with the abnormal data. Since the sequencing data are inherently
related, the anomalous pieces in the data need to be corrected
instead of directly deleted. The anomaly detection can select the
normal data out of anomalous data, so we can use normal data of
wind turbines with wind speed and power generation to train a
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Figure 1: Anomaly detection

LightGBM model and use this model to correct the anomalous part.
Eventually, there are 134 wind turbines in total that are corrected.
We selected wind turbines 1 and 2 to demonstrate the cleaning
effect, as shown in Figure 2, where the blue and orange curves
represent normal and corrected data, respectively.

3.2 Feature Engineering

Data is the foundation of modeling, and features are the essential
and significant information extracted from data. After the data pro-
cessing, we analyze the correlation between the features, construct
new highly-correlated features and remove some uncorrelated ones.

For more effective feature screening, we performed a correlation
analysis on the features. Figure 3 depicts the correlation matrix of all
variables, indicating a strong linear relationship between Wspd and
Patv and a moderate correlation between angular variables (Pab1,
Pab2 and Pab3) and Patv. Furthermore, the relationship between
Prtv and Patv is statistically significant [6], so Prtv is also included.
Since the remaining variables have no significant correlation with
Patv, we exclude them from the modeling. At the same time, the
LightGBM model in the data cleaning stage is used to analyze the
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Figure 2: Distribution correction

feature importance. The features with less importance are Tmstamp,
Widir, Ndir, Etmp, and Itmp.
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Figure 3: Heat map of feature correlation matrix.

We also construct statistical features to historical power genera-
tion data are shown in the A.1. Statistical features (7)-(12) (14)-(21)
refer to tsfresh[6].

3.3 WPFormer Structure

Inspired by the innovations from Autoformer [24] and FEDformer
[31], WPFormer uses an encoder-decoder structure that includes
sequence decomposition using average pooling, auto-correlation
mechanism for sequence-level connections, multi-head attention
from original transformer [21], graph neural network encoding and
feedforward module, as shown in Figure 4.

Encoder The spatial dimension information and temporal di-
mension information are learned by graph attention network and

Xuefeng and QingShui, et al.

one-dimensional convolution, respectively. Moreover, the learned
spatio-temporal information is taken as the encoder’s input so
that the sequence can be learned through autocorrelated attention
and then decomposed by the average pooling. The entire learning
process can be formulated as follows:

X2 = ConviD (GAT (X, G)),
Sé’r},_ = AvgPooling (AutoCorrelation (Xel; 1) + Xg; l) )
Séﬁ , - = AvgPooling ( FeedForward (Sér}) + Sé’r}) ,

where X represents the initial turbine information, G represents
the graph network code of the turbines, Xeln = Encoder ((\’el; 1)

and Sé}i,i € {1, 2} represents the seasonal component after the
i-th AvgPooling in the [-th layer respectively. On the wind power
data, increasing the depth of the model will perform better than
increasing the width, and our encoder has five layers eventually.

Decoder The decoder contains two parts of the input, one of
which is the spatio-temporal embeddings extracted from the sea-
sonal initialization term through graph attention and one-dimensional
convolution, and the other one is the direct input of the trend initial-
ization term. The first input part is refined by the auto-correlation
mechanism and added to the encoder output for the following
decoding. The second input part accumulates the trend items to in-
crease the information utilization and improve the inference ability
of the model.

Xoe = Conv1D(GAT (ConCat (AvgPooling (X) , Sinit) » G))
‘7'2 = ConCat (AvgPooling (X) , Tnit) »

Séel 7:121 = AvgPooling (AutoCorrelation ((\’ée_l) + X(lie_l) ’
Séez 7&22 = AvgPooling (AutoCorrelation (S(liel ; XeNn) + Séel ) ’
Sélﬁ’ 7523 = AvgPooling (FeedForward (S(liez) + S(ll’ez ) ,

Toe = Tae |+ Wi T+ Wi - Tl + Wi - T
(3)
where Sipit and it represent the initialization of seasonal and
trend terms, respectively, as shown in 4. Sé’ei, 7&21', i € {1,2,3} repre-
sent the seasonal and trend component after the i-th decomposition
block in the I-th layer respectively. W, ;,i € {1,2,3} represents the
linear projector for the i-th extracted trend ‘7&2’1..

Auto-Correlated Mechanism This mechanism was proposed
by Autoformer [24] in 2021. It mainly calculates the sequence auto-
correlation coefficient, aggregates similar subsequence information,
realizes sequence-level connection, and completes better informa-
tion aggregation. While introducing auto-correlation, we still use
multi-head attention to increase model variability, resulting in im-
proved prediction accuracy.

Graph Neural Network Representation Consider a wind
farm containing 134 wind turbines, each wind turbine impacts
the overall power generation, and there are similarities between
different wind turbines. We use a graph structure to encode the
relationships between turbines. Each turbine is a graph node. For a
particular node, calculate the K nodes with the highest correlation
with it, and establish connection edges.
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3.4 Point-by-point prediction based on tree
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Figure 5: The process of wind power prediction with Light-
GBM.

Besides building a deep learning model with PaddlePaddle to
predict future wind power generation, we also build the Light GBM
model to reduce prediction variance and increase generability by
ensembling different models. Inspired by the literature [5], the
future power generation of each turbine at every time is predicted
by an individual model. This prediction approach needs to build
38592(288x134) models in total, which is unacceptable due to the
large model size overall. Thus, we reduce the number of models in
the following two ways:

e Auxiliary wind turbines: We first use the k-shape algorithm
to cluster the wind turbines into 39 classes based on the
power generation data and a LightGBM model to predict
the class of wind turbines. Then, we can use "auxiliary tur-
bines" data, which is defined as the group of turbines with
the closest power generation characteristics to this partic-
ular turbine. We can average the power generated by the

turbines in the cluster and the power generated by the auxil-
iary turbines as the model’s input to mitigate the effect of
data noise.

e Downsampled power generation at time scale: The time res-
olution of the data is 10min, and the amount of change in
power generation data for two adjacent times is insignifi-
cant. Therefore, the power generated at N adjacent moments
should not differ significantly and can share one prediction
value from the same model.

To reduce the dramatic fluctuations in historical power data,
focus on data trends, and decrease input data dimensions, historical
power data is processed by moving average with the window size
of 6 and stride of 3.

Finally, we concatenate historical power generation(after moving
average) with statistical features (from section A.1) as the input
of LightGBM. Figure 5 illustrates the process of predicting future
power generation with LightGBM.

3.5 Model Fusion Strategy

The model ensemble plays an important role in our scheme. We
have tried two different ensemble strategies in this competition:

Hybrid Fusion The first ensemble method uses a hybrid fusion
method combining both mean and median. In the competition, we
need to predict the wind power in the next two days, a total of 288
timestamps. When analyzing the prediction results of different mod-
els, we find some pretty different predictions in some timestamps
between them. Because the mean fusion is sensitive to outliers that
may reduce the fusion performance, we adopt a hybrid strategy
based on both mean and median. Here we introduce a threshold
a. For timestamps with larger differences than « in the prediction
results, we adopt the mean fusion method; otherwise, the median
fusion method is adopted.

Weighted Fusion Another method is to use linear weighting
to ensemble the models. However, manually assigning weights not
only consumes too much time but also may cause an overfitting
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problem. Therefore, we use ridgeCV to automatically calculate
the models’ weights and add appropriate regularizations to avoid
overfitting.

3.6 Exploratory Methods

In addition to the main methods above, we also explore and utilize
a few other methods, two of which are highlighted below.

Mixed Loss Since a large amount of invalid data in the dataset,
these data need to be filtered out, and corresponding loss should
be ignored. Based on this, we mainly use MseLoss as follows,

k
1 ’
Lmse = _Zk ;:0 (yl- - yi)z- 4

where y;. is i-th unfiltered predicted value, y; is i-th unfiltered true
value and k is the total number.

In addition, since the competition metric is the average of rmse
and mae, we also tried other losses, such as L1loss as follows,

1 k
Lp= EZ
i=0

In order to get closer to the competition metrics, we use a Mse-L1
hybrid loss based on the above two losses, which can be written as,

Liotal = Lmse + Ly (6)

Models Based on Mean Learning To mitigate the impacts of
random fluctuations and abnormal data on model learning, we at-
tempt to model the deviation relative to mathematical expectations
of wind power. We analyze the average power of each turbine at
each time interval (Figure 6) and find that the power varies widely
from one turbine to another, but the power fluctuation of the same
turbine at the same time interval is insignificant. Based on this ob-
servation, we train the separate models for each turbine to predict
the offset to its mean power over the next two days. Specifically,
the model takes the average power E(P) and monitoring data of the
previous 14 days of a particular turbine as input and then predicts
the offset and scale for the next two days. Finally, the wind power
P can be estimated by the following equation:

Pij = axE(P) + fi. ™
where P; ;. denotes the power generation of the ith turbine on the

kth day, ;. and f denote the scale factor and offset at the kth day,
respectively.

;- ul. ©)

4 EXPERIMENTS

We have achieved steady improvements online using data cleaning,
feature engineering, different models, training tricks, and fusion
strategies. Compared to Phase 1, Phase 2 and Phase 3 are more
representative. The results of Phase 2 are shown in Table 2. Feature
screening from 1 to 3 is to delete Prtv, delete Pab1 to Pab3, and
delete Tmstamp, Wdir, Ndir, Etmp, and Itmp, respectively. Based on
the baseline, we increased the days of the training set, modified the
training parameters, expanded the model width, and set the input
length to 432, which constituted the model of the basic version
of phase 2 (phase 2 basic). On the basic model, adding feature
screening and data cleaning has improved the score by 0.26397, then
further improved by 0.09275 through model fusion and tuning of
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Figure 6: Illustration of the expected value of wind power of
turbines 1, 50 and 100. The solid line indicates the expectation
of the turbine power and the colored area indicates the 95%
confidence interval.

the training hyperparameters, resulting in the overall improvement
by 0.35672 and top 10 ranking in phase 2.

Table 3 shows the results of Phase 3, where the base version
model is the optimal model combination of Phase 2. Following the
model structure in Section 3.3, we add a variety of new models
with different hyperparameters and features. From Table 3, data
cleaning, feature filtering, auto-correlation mechanism, and model
fusion can consecutively improve the score about 0.2, 0.032, 0.05,
and 0.07. With the help of all these techniques, the eventual online
score is improved to -45.13867.

The steady improvement of online experiments proves the ef-
fectiveness of our modeling techniques, including data cleaning,
feature screening, model design, and fusion strategies. In addition,
due to the limited submission time, our best score model could not
be submitted online at the last moment.

5 CONCLUSIONS

This paper proposes an excellent framework for the problems and
challenges of wind power forecasting. We first design data cleaning
and correction based on the wind power curve and complete feature
screening. Then we develop two integrated, highly accurate models
specifically for wind power scenarios. One is the WPFormer which
uses an auto-correlation mechanism to learn the information of
sequence-level relationships, and a spatio-temporal graph neural
network encodes multi-turbine information. The other one is the
POPtree which uses a bunch of LightGBM models to predict the
wind power of the individual turbine. Furthermore, we propose
two effective model fusion methods to ensemble these two models.
Eventually, the steady improvement of online scores shows the
excellent performance of our solution.
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Table 2: Results of Phase 2.

Serial No. Model Components Online Score  Offline Score

1 baseline - -46.83

2 phase 2 basic -44.72740 -43.78076
3 + feature screeningl -44.60840 -43.59530
4 + model fusion -44.58287 -43.63643
5 + feature screening?2 + data cleaning -44.46343 -43.36928
6 + Change the training parameters -44.40641 - 43.26067
7 + feature screening3 -44.39223 -43.28473
8 + model fusion + Change the training parameters -44.37068 -43.31144
9 + POPtree -44.32841 -43.28473

Table 3: Results of Phase 3.

Serial No. Model Components Online Score  Offline Score

1 phase 3 basic -45.48641 -43.33292
2 + data cleaning -45.28938 -43.31111
3 + feature screening -45.25772 -43.40196
4 + autocorrelation mechanism -45.20941 -43.10517
5 + model fusion -45.13867 -43.10917
6 Add the POPtree based on model No.2 -45.22724 43.35802
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No. Implication
13 quantile (0.1, 0.25, 0.5, 0.75, 0.9)
14  the sum over the absolute value of consecutive changes.
15 augmented Dickey-Fuller test
16 the number of values in the time series that are higher
than the mean of the time series.
17 the length of the longest consecutive subsequence in
the series that is bigger than the mean of the time series.
the length of the longest consecutive subsequence in
18 . . . .
the series that is smaller than the mean of the time series.
19 the mean over the absolute differences between
subsequent series values.
20  the number of peaks in the time series.
21  the sum of all data points that are present more than once.

No. Implication No. Implication
1  mean 2 standard deviation
3 maximum 4  skewness
5 minimum 6  kurtosis
7  absolute energy 8  autoregressive coefficient
9  autocorrelation 10 approximate entropy
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