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ABSTRACT

Wind Power Forecasting (WPF), which aims to predict the future
wind power supply, is increasingly becoming one of the most criti-
cal issues in wind power integration and operation. Accurate wind
power forecasting is key to reducing wind power fluctuations in
system dispatch planning. However, accurate prediction of wind
power is challenged by the following two aspects: i) complex spatial-
temporal correlations and ii) huge data uncertainties. To address
the above challenges, we propose H-STWPF, which can capture the
spatial-temporal correlations and uncertainty for wind power fore-
casting. Specifically, we first develop a deterministic model (named
Temporal MLP) to forecast wind power effectively and efficiently.
Meanwhile, a probabilistic model (named Deep Factor) is proposed
to model uncertainty factors and achieve probabilistic prediction
to improve the robustness of the model. At last, to obtain more
accurate predictions, a multi-stage and multi-granularity fusion
mechanism is developed that can fuse models with different predic-
tion lengths. H-STWPF is fully developed based on paddlepaddle
and equipped with a unified data pipeline and training configura-
tion to quickly implement multi-model training and integration.
Experiments in the Baidu KDD Cup 2022 show the effectiveness of
our model.
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1 INTRODUCTION

Wind Power Forecasting (WPF), which aims to predict the future
wind power supply, is increasingly becoming one of the most critical
issues in wind power integration and operation [17]. Accurate wind
power forecasting is the key to reducing wind power fluctuations
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in system dispatch planning [4, 13]. However, accurate prediction
of wind power is challenged by the following two aspects:

Complex Spatial-Temporal Correlations. Wind power is af-
fected by various kinds of spatial and temporal factors. Previous
methods mainly model the WPF as a time series forecasting prob-
lem. Each turbine is considered independent of the others in those
methods. However, in real scenarios, spatial correlations exist be-
tween different turbines. For example, generated wind power of a
turbine usually has the same trend or shares some similarities with
its spatial neighbors. How to effectively encode and model both
the spatial and temporal correlations brings huge challenges to the
problem.

Huge data uncertainties. Affected by stochastic factors such as
the weather, wind speed and turbine internal contexts, wind power
data contains huge uncertainties. A majority of previous works
focus on the point prediction of wind power. Although some of them
achieved promising performance, those methods cannot depict the
uncertainty of the prediction. How to model the uncertainties in
the data and build a probabilistic prediction is a great challenge.

To address the above challenges, we propose a Hybird Spatial-
Temporal Wind Power Forecasting framework (H-STWPF). It is a
hybrid deep learning model equipped with two important predic-
tion models, i. e., a deterministic prediction model and an uncer-
tainty prediction model. Both spatial and temporal correlations are
captured in each model. In addition, in order to predict wind power
more accurately within 48 hours (i.e., 288 steps), a multi-term and
multi-grain fusion mechanism is designed to improve the prediction
accuracy by integrating different models. In summary, the main
contributions of this work are as follows:

e We propose H-STWPF, which can capture the spatial-temporal
correlations and uncertainty for wind power forecasting.

o A deterministic model (named Temporal MLP) is proposed to

forecast wind power effectively and efficiently. Meanwhile,

a probabilistic model (named Deep Factor) is proposed to

model uncertainty factors and achieve probabilistic predic-

tion to improve the robustness of the model.

To obtain more accurate predictions, a multi-term and multi-

grain fusion mechanism is developed that can fuse models

with different prediction lengths.

o H-STWPF is fully developed based on paddlepaddle and
equipped with a unified data pipeline and training configu-
ration to quickly implement multi-model training and inte-
gration. Experiments in the Baidu KDD Cup 2022 show the
effectiveness of our model.
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2 PROBLEM DEFINITION

The main objective of this study is to forecast wind power with
respect to the dynamic features of each wind turbine, including
weather conditions, internal status and other signals of wind tur-
bines. Meanwhile, the relative positions of different wind turbines
on the farm and contextual information are used to enhance the spa-
tial correlation of each turbine. Given historical data X € RNXTxF
for a wind farm of length T, where N is the number of turbines
and F is the feature number of each turbine, the prediction target
Y e RVXPX1 s the power time series generated by all turbines in
the future of length P. For notational purposes, we use B to denote
the batch size and C to denote the number of hidden units.

3 MODEL
3.1 Overview

Figure 1 shows the overall architecture of our method. We construct
H-STWPF in the following three steps: 1) data pre-processing &
feature extraction; 2) multi-model prediction; 3) multi-term & multi-
grain fusion. The data pre-processing & feature extraction step first
remove the noise and do the data augmentation of the original
data, then extract comprehensive features based on the processed
data. The multi-model prediction learns multiple deterministic and
probabilistic models under different granularities. The deterministic
model (named Temporal MLP) is proposed to forecast wind power
effectively and efficiently. And the probabilistic model (named Deep
Factor) can model uncertainty factors and achieve probabilistic
prediction. At last, the multi-term & multi-grain fusion step fuses
the predictions of multiple models with different characteristics for
more accurate prediction.

3.2 Data Pre-processing & Feature Extraction

To avoid the influence of noise features, only active power (i.e., Patv)
and wind speed (i.e., wspd) are used in our method.

3.2.1 Data Pre-processing. Normalized data helps to improve the
training speed and prediction accuracy of the model, so we first
preprocess the data in the following operations:

Pre-filling missing values. All missing values are initially filled
by 0.

Cilpping abnormal values. In this work, abnormal values refer to
values not aligned with physical rules. For example, the generated
wind power is less than zero. In such cases, we clip those values
into their corresponding value range.

Spatial group partitioning with turbine clustering. To capture
the spatial correlation, turbines with similar power generation pat-
terns are partitioned into the same group by clustering. Specifically,
the Euclidean distance of the time series of Patv is calculated, and
the turbines are divided into 6 clusters using the K-means algorithm,
as shown in Figure 2.

Group-mean aggregation. We aggregate the data (i.e., Patv, wind
speed) from multiple turbines and take their average to generate a
new time series. We obtain six new mean aggregation series based
on the grouping information of the turbines, called the spatial group
mean series, which are fed into the feature extraction.
Global-mean aggregation. We also define a spatial global-mean
series, which obtains a new series by merging the time series of all
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turbines. It can help our model to capture the common patterns of
all turbines.

Spatial filling of missing values. Since the zero-filling approach
cannot effectively exploit the spatial pattern information, we design
a novel spatial filling method that uses group-mean to fill in the
missing values for each turbine.

Coarse-grained aggregation of time series. In addition to the
original 10min-granularity, we introduce more coarser granularities
by aggregating the data in the same 20min / 30min window.

Table 1: Feature table with 10-minute granularity.

feature type features configure
raw values patv,wspd granularity = 10 min
time different features diff At =1,23

window = 1h, 3h, 6h,
12h, 24h, 48h, 72h

. X e max, min, std,
time window statistics .
var, mean, median

3.2.2 Feature Extraction. In this work, the extracted features can be
roughly classified into three types: i) raw values ii) time difference
and iii) time window statistics. All the features are listed in Table 1.
We extract the features for the input three series, and get the full
series features, group series features and global series features.
Raw values. The original inputs after filling missing values and
clipping abnormal values. The raw values contain the basic infor-
mation of the historical data.

Time difference features. It is constructed by the difference be-
tween the values of the given two time steps. Let At denote the
duration between the two time steps. We extract multiple time
difference features to fully capture the change patterns in the data.
Time window statistics. We count statistical features such as
mean, variance, standard deviation, maximum value, and minimum
value of a feature within a given time window.

Spatial position embedding. A trainable embedding is assigned
to each turbine as follows:

SE = [zi,zg,..,,z;]] e RN*d, (1)

Temporal position embedding. We use time-of-day and hour-
of-day to depict the position of each time step ¢ and construct two
trainable embeddings for them. For each time step, the two embed-
dings are combined by summing. All temporal position embedding
vectors are denoted as:

TE = zi,zg,..l,thd] € RTaxd (2)

3.2.3 Feature normalization. We use Z-Score normalization to nor-
malize the features in each dimension.

3.3 Spatial and Temporal Modeling

3.3.1 Spatial Correlation Modeling. There are spatial correlations
between turbines, e.g., the power time series of turbines in geo-
graphical proximity can be similar. We constructed group-mean
series and global-mean series to model local spatial correlation and
global spatial correlation, respectively. In order that each turbine
can effectively exploit spatial correlations, local and global series
features are fed into the neural network along with the original

series features. The input is denoted as X; € RT<F.
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Figure 1: Overview of the Solution, which includes the following three steps: 1) data pre-processing & feature extraction; 2) multi-model
prediction; 3) multi-term & multi-grain fusion. The data pre-processing & feature extraction step first remove the noise and do the data
augmentation of the original data, then extract comprehensive features based on the processed data. The multi-model prediction contains the
deterministic model (Temporal MLP) and the probabilistic model (Deep Factor) under different granularity to forecast wind power effectively
and efficiently. The multi-term & multi-grain fusion step fuses the predictions of multiple models with different characteristics for more

accurate predictions.
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Figure 2: Spatial group partition.

3.3.2  Temporal Correlation Modeling. Since the state of the future
time step depends on the historical time step, we construct two

network components to capture both short-term and long-term
time series correlations.

Gated Recurrent Unit (GRU). GRU [2] has been shown to be
excellent at capturing short-term temporal dependencies. Therefore,
GRU is used as one of the main components in our model.

Temporal Linear Layer (TLinear). It directly flattens and
blends information from multiple time steps to capture long-term
temporal dependencies. It is efficient and cost-effective compared
to the currently popular self-attention structures [14], which helps
us ensemble more models and benefit from them. Given the hidden
layer representation H € RBXNXTXC of a]] turbines, the time-linear
layer is formulated as:

H = TLinearrc—c(H) A3)

where W € RTCXC and b € R are trainable parameters.

3.3.3  Input with Spatial and Temporal Position Embedding. Since
MLP and GRU do not have the ability to learn spatial and temporal
inductive biases, inspired by Transformer [14], the learnable spatial
and temporal position embeddings are added to the input X =
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(X1, X2, ..., XN) € RBXNXTXF 4 follows:
HO = Linearp_,c(X) @ Lineary_,~(SE) & Linear;_,(TE), (4)

where @ denotes the broadcast addition operation.

3.4 Deterministic Forecasting Model

We design a deterministic prediction model, called Temporal MLP,
which directly regresses the value of the prediction target. We de-
sign the model directly using MLP instead of self-attention because
the proposed TLinear layer is able to capture long-term temporal
dependencies.

As shown in Figure 1, we first construct a multi-layer MLP net-
work to enhance the representation of the model. Each network
layer consists of a linear layer and a GLU [3] activation unit as
follows:

H' = GLU(Linearc_,zc (H'1)). (5)

Then, the TLinear layer is used to extract temporal features based
on the features extracted from each network layer, and the obtained
features are then fed into a linear layer and GLU activation units to
boost the nonlinearity:

H! = TLinearTc_@(‘Hl) € RBXNXC

¥ y (6)
H! = GLU(Linearc—_ o0 (H?)) € REXNXC

Finally, all temporal features are collected and fed into an MLP
consisting of two layers to directly predict multiple future time
steps as follows:

0= GLU(Linear(LH)CHC,(f{O -l f{L)) c RBXNXC"

y = Reshape(Linearc,p(0)) € RBXNxPx1

™

Based on the above network, we obtain the final prediction result Y.
In our experiments, we set C=64, L=2, and use a Dropout operation
with a missing rate of 0.3 for O during the training process.

In general, using evaluation metrics as loss functions in the
training process can lead to more accurate prediction results. Since
RMSE may fail to compute the gradient, we construct a pseudo-
score loss consisting of MSE and MAE as follows:

S N P
Lscore = ﬁ (Z Z Z Mg it - [(ys,i,t - gs,i,t)z + |ys,i,t - gs,i,tl])

s=1i=1 t=1
)

where S is the number of samples. y and ¢ are the actual and pre-
dicted wind power, respectively. Note that y and g are scaled by
dividing by 1000 before calculating the loss in order to be consistent
with the online evaluation standard. In addition, m € {0, 1} denotes
the mask, and if the predicted target is abnormal, m = 0.

3.5 Probabilistic Forecasting Model

Affected by stochastic factors such as the weather, wind speed
and turbine internal contexts, wind power data contains huge un-
certainties. To describe the prediction uncertainty, we introduce a
probabilistic prediction model Deep Factor [15]. Unlike the Tempo-
ral MLP output point prediction results, Deep Factor describes each
prediction target as a probability p(y|x). Given a forecast length
P, our goal is to calculate the joint predictive distribution of future
observations, p({y; +1:7+p ¥ {xi 1.7 }Y,).
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The key assumption of Deep Factor is that each time series is
governed by a fixed global (non-random) and a random component.
In particular, we assume the following generative process:

fixed effect : o, = Linearc_,;(GRU(H,—1)) e RPN, (9)
random effect : p, = Linearc_,; (GRU(H;-1)) € RBN’ (10)
emission :  y, ~ p(y,|p;, o4),

The observation model p can be any parametric distribution, such
as Gaussian, Poisson, or Negative Binomial. In this work, we use
the Gaussian distribution. Then, we use the negative log-likelihood
loss to train the model as follows:

S N P
L = - Z Z Z ms,it - 10g p(Ys,i,t|ts,its Os,it)
5=1 i=1 j=1
S N P 2 2 (1
o (10895 (ysic — psiic)
s=1i=1 j=1 Os,it

where C is a constant which can be omitted during training. ms; s
is the mask, refer to Eq. (8) for details. In the inference stage, we
use a fixed effect i ; ; as the final prediction.

3.6 Hybrid Model

Owing to the huge data uncertainties, the characteristics of wind
power fluctuations are so complex that a single model can hardly
capture them comprehensively. Therefore, we train several above-
proposed models and develop a hybrid model with a multi-term &
multi-grain fusion mechanism to fully take advantage of different
models. As shown in Table 2, the candidate fusion models can be
broadly classified by the following two dimensions:

Table 2: Model Table.

model term  predlength  granularity
short  3,6,9,12,24,34 10min
Temporal MLP middle 72 20min
(global-mean)
long 144,288 10min
long 144,288 30min
Temporal MLP o 24,34 10min

(all-turbine)

short  3,6,9,12,24,34 10min
middle 108
long 144,288

Deep Factor 30min

10min

Multi-term. Firstly, the models can be divided into short-term,
middle-term, and long-term models according to their prediction
length. Different models are designed to learn the patterns in their
corresponding terms.

Multi-grain. Secondly, the models can be divided into 10min-grain
(the original grain), 20min-grain, and 30min-grain according to the
input and output grain of the model. Coarser granularity enables the
model to process more long-term data with the same input length,
thereby increasing the receptive field of the model. In addition,
the granularity should not be too large, because much original
information will be lost under large granularity, making it difficult
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for the model to learn effective trend information. Therefore, we
use 20min and 30min besides the original granularity (i.e., 10min).
Moreover, it is worth mentioning that Temporal MLP has two
versions: global-mean and all-turbine. Temporal MLP (global-mean)
only predict the average value of all turbines, then broadcasts the
average value to all turbines as their predictions. On the contrary,
Temporal MLP (all-turbine) predicts the values of all the turbines
at once.
Fusion. After getting the models that capture different patterns, a
key problem is how to aggregate them to form the final prediction.
An intuitive method is to average the predictions of different meth-
ods as the final result. However, models with different prediction
lengths can perform differently. It is not wise to assign the same
weights to them. For example, suppose there is a model with a
prediction length of 12, and another model with a prediction length
of 288. Intuitively, the 12-model should take more weight than the
288-model in the prediction range 0-12. Based on the above analysis,
in this work, We assign different weights to models with different
prediction lengths.

Table 3: Example of Fusion Weight.

1-12 | 13-24 | 25-288
Mo 50% 0 0
Moy 40% 60% 0
Moss | 10% | 40% 100%

Here we use an example to describe the idea of fusion. Suppose
that there are three models with prediction length 12, 24, 288 (de-
noted by Mz, Mas, Mags, respectively). Then an example weight
matrix will be constructed as shown in Table 3. In the prediction
length range 0-12, M2, Mas, Mags contributes 50%, 40%, 10%, re-
spectively. Therefore, the first time step in the prediction y;=; is
calculated by Equation 12. While in the prediction length range
12-24, Ma4, Magg contributes 60%, 40%, respectively. So y;=13 is
calculated by Equation 13. Note that M is assigned weight 0 in
the prediction length 12-24, because M3 has no prediction in the
length range 12-24. The weight matrix in our models is illustrated
by a heat map shown in Figure 3.

Yr=1) = 0.5 Mya(t = 1) + 0.4 Mag(t = 1) + 0.1 % Magg(t = 1).
(12)

Y(r=13) = 0.6 * Maa(t = 13) + 0.4 % Magg(t =13).  (13)
At last, because the wind power will be largely affected by sea-
sons, for example, the power generation in summer will be higher
than that in winter on average. However, the season is unknown
in the online inference process. Therefore, we design a factor to
artificially scale the predicted results, to make the predictions closer
to the distribution produced by the season of the online test data.

4 EXPERIMENT

We extensively evaluate the proposed model in the Baidu KDD Cup
2022.

Dataset. The dataset we use is collected by Longyuan Power Group!,
which contains the wind power data in 245 days of 134 turbines

!https://aistudio.baidu.com/aistudio/competition/detail/152/0/datasets
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Figure 3: Fusion Weight in Our Solution.

from the same wind farm. And each record is sampled every 10 min-
utes. In addition to the generated wind power, the data also provides
other information such as the spatial distribution of wind turbines,
as well as the dynamic context factors like temporal, weather, and
turbine internal status.

Experimental Setting. In the experiment, we split the given
dataset into training, validation in chronological order by 215 days
and 30 days, and test the model by the online test data. Our model
is trained by the Adam [8] optimizer with an initial learning rate
of 2e-4. The batch size is set to 32. And the training process is
early stopped within 10 epochs. The model is implemented by Pad-
dlePaddle [9] and trained on NVIDIA V100 GPUs provided by Al
Studio?.

Metrics. Following the setting of the KDD Cup, we evaluate the
prediction results for each wind turbine and then sum the prediction
scores as the final score of the model. The evaluation score s}lo for
wind turbine i at the time step t( is defined as:

288 (i —i 288

j=1 (yiw - yto+j) Jj=1
+ ), (14)

288 288

where y and y is the actual and predicted wind power, respectively.

The overall score of a model Sy, at time fg is the sum of the prediction

score on all wind turbines.

Results. We report the evolution process of our model in the second

phase, which includes the following version:

i =i
Ytorj ~ Yto+j

; 1
5;0 = 5(

v1: Only includes the Temporal MLP (global-mean) model.
v2: add the multi-term prediction based on v1.

v3: add the multi-grain prediction based on v2.

v4: predict the value for each turbine (i.e., Temporal MLP (all-
turbine)), not the average value of all turbines (i.e., Temporal
MLP (global-mean)), compared with v3.

e v5: Add the probabilistic forecasting model Deep Factor
based on v4.

Zhttps://aistudio.baidu.com/aistudio/index
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449
é V2 .
@ 44.468 Temporal MLP(global-mean) (multi-term)
o v3 Temporal MLP (global-mean) (multi-grain)
8 44394
= v4 Temporal MLP (all-turbine)
44 336
Deep Factor (multi-term & multi-grain)
Score 44.25 4435 4445 4455 44.65 4475 44,85 4495

Figure 4: Model performance in the 2 phase.

The performance of different versions is reported in Figure 4. v2
largely outperforms v1, indicating that adding the multi-term pre-
diction can greatly boost the model’s prediction ability, especially
the performance in short-term prediction. Compared v3 and v2, we
can see that performance of v3 is significantly better than v2, which
proves the effectiveness of the multi-grain prediction. Adding the
multi-grain prediction can benefit the middle-term prediction.

v4 directly predicts the wind power of each turbine rather than
the global average. In this way, more turbine-specific patterns can
be captured by the model, thus improving the model’s performance.
At last, by adding the probabilistic forecasting model, the perfor-
mance improves sightly, proving the effectiveness of modeling the
uncertainties of wind power. And in the 3rd phase, the final score
of our model is 45.173.

5 RELATED WORK

One of the common approaches for wind power forecasting is the
physical model, such as Numerical Weather Prediction (NWP) [5],
which predicts wind speed based on the atmosphere around and
inside the wind farm, then forecasts the power by the relationship
between wind speed and the output. Most studies consider wind
power a time series and forecast with traditional statistical models,
machine learning models, and deep learning models. Traditional
statistical models include autoregressive moving average (ARMA)
[11], autoregressive integrated moving average (ARIMA) [19], and
fractional-ARIMA (f-ARIMA) [7]. ML contains least squares support
vector machine (LSSVM) [16] and Kalman filter[1], etc. With the
development of deep learning, more and more models use it to
forecast wind power, such as long short-term memory (LSTM)
[18, 20], gated recurrent unit(GRU) [10], etc. They are good at
dealing with complex nonlinear problems and have better predictive
power than traditional statistical models. Some researchers combine
different models to describe different aspects of WP fluctuation,
including stacking-based model [6] and weight-based model [12].

6 CONCLUSION

In this paper, we propose a hybrid model named H-STWPF, which
can capture the spatial-temporal correlations and uncertainty for
wind power forecasting. The model is fully developed based on
paddlepaddle, and experiments in the Baidu KDD Cup 2022 show
the effectiveness of the proposed model.
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