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ABSTRACT
Wind energy is an effective supplement to traditional energy sources.
However, wind power generation is strongly weather-dependent
and thus not only unsustainable in terms of production, but also
highly volatile. This complex variability poses a huge challenge to
the smooth operation of the grid system. In this scenario, a unique
Spatial Dynamic Wind Power Forecasting dataset from Longyuan
Power Group Corp. Ltd (SDWPF) is used for modern wind turbine
power forecasting. In this work, we propose a framework for accu-
rate wind power generation forecasting (WPF) based on deep learn-
ing. To obtain a more generalizable learner, we use ensemble learn-
ing to build our framework, which consists of the following two
parts: a) a modified version of the DLinear model, which uses time
series decomposition and linear layers for information aggregation,
and b) an extreme time-gated network that adaptively captures fine-
grained information and re-aggregates information by spatial loca-
tion in the inference stage to obtain higher forecasting accuracy. The
results indicate that our proposed combined model framework can
capture long-term time series information well. Our code is avail-
able at https://github.com/shaido987/KDD_wind_power_forecast.
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1 INTRODUCTION
Wind power, clean and widely distributed, has been recognized as
a promising renewable energy for future power generation [20].
According to the World Wind Energy Association (WWEA), the
global wind industry had a capacity of 837 GW installed by the end
of 2021 and 21,1 GWof offshore wind capacity was commissioned in
2021, which is an astounding level of growth with three times more
than 2020. The increased penetration of wind power comes with
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challenges in reliably operating the electric grid system, mainly due
to the high variability character of wind power generation [1, 13].

To deal with these challenges, efficient wind power forecasting
has been widely considered, since accurate predictions make it
possible to ensure reliable and economically efficient generation
scheduling. Many studies have been devoted to investigating im-
proved wind forecasting techniques, and most of them are based on
either physical or statistical approaches. The physical WPF models
draw on detailed mathematical expressions of the dynamic wind
turbines/farms systems [5, 29]. Despite their advantageous physical
interpretability, the physical methods often require huge amounts
of computation due to their complex mathematical equations [28].
Alternatively, statistical WPF models, based on vast amounts of
historical data, aim at finding the potential relationships between
wind power generation and explanatory variables. Some traditional
statistical methods such as ARMA, VAR, and Bayesian approaches
have been modified to perform short-term wind generation fore-
casting [3, 14, 16]. A drawback of these approaches lies in their
limited adaptability and learning capability, resulting in downgrad-
ing performance with increasing forecast horizons. More recently,
deep learning WPF models have drawn attention for their powerful
representation ability [18, 21, 25]. These methods aim to model
mapping functions from input variables to wind power generation
rather than relying on in-built physical assumptions. Despite an
explosion of studies on designing deep learning WPF models, there
is still considerable space for improvement in inductive biases due
to the high uncertainty and high non-linear behaviour that exist in
wind power generation [1, 9, 24].

With the aim to examine the limitations of existing WPF models
and exploring new advanced methods, Baidu presented a unique
dataset, SDWPF, and launched the Baidu KDD Cup 2022 compe-
tition: Spatial Dynamic Wind Power Forecasting Challenge [30].
SDWPF contains comprehensive statistics on wind power genera-
tion collected from the Supervisory Control And Data Acquisition
(SCADA) system of 134 wind turbines in a wind farm. For each
turbine, the dynamic context factors are provided at 10 minutes
intervals and the assigned task is to forecast the future 2 days (288
timesteps) of the active power output of the wind farm. Specifically,
13 features are given, consisting of 10 time series with internal
status and external features such as wind speed, wind direction,
temperature, nacelle direction, and three auxiliary features: day,
time, andwind turbine ID. In addition to themonitoring data of each
wind turbine, their relative location is provided. This allows easy
usage of methods taking advantage of the spatial distribution, e.g.,
Graph Convolutional Networks (GCN) [8]. For a full introduction
to the challenge, see the Baidu KDD Cup 2022 website1.

1https://aistudio.baidu.com/aistudio/competition/detail/152/0/introduction
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(a) Immediate forecast. (b) One-day future forecast. (c) Two-day future forecast.

Figure 1: Feature importance using SHAP values. Features at the top have a higher impact on the active power (𝑃𝑎𝑡𝑣) while the
color indicates the direction (hence best viewed in color).
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Figure 2: Feature correlation heatmap. The correlation coef-
ficient is rounded to two decimal places.

Here we demonstrate improvements in the wind power forecast-
ing capability. To create these more skillful predictions, we develop
a data-driven approach ensembling two models, the Modified DLin-
ear and the Extreme Temporal Gated Network. The ability of the
proposed framework to learn from observational data as well as
capture spatio-temporal uncertainty makes it a powerful method
for operationally useful forecasting.

2 METHODOLOGY
We rely upon two separate approaches and fuse their prediction
results to produce the final wind power forecast at each timestep.
The first approach is an altered version of DLinear [27] (MDLinear)
while the second method (XTGN) is based on Temporal Convo-
lutional Networks (TCN) [10]. In the following, we introduce the
shared data preprocessing and feature engineering steps, followed

by the details of the two approaches. Finally, the fused model and
its forecast merging strategy are presented.

2.1 Preprocessing and Feature Engineering
Initial Feature Analysis. There are a total of 13 features in the

raw dataset, three of which are auxiliary ones: day, time, and wind
turbine ID (𝑇𝑢𝑟𝑏𝐼𝐷). The day information is irrelevant due to how
the evaluation is done (all test inputs start on day one) and is thus
removed. For the time of day, it is correlated to the wind speed due
to the increase in temperature during the day, however, both wind
speed and outside temperature are within the provided feature set,
making time of day largely redundant. It is therefore also removed.

The remaining ten features are from the internal monitoring
SCADA system. The provided features are wind speed (𝑊𝑠𝑝𝑑),
wind direction (𝑊𝑑𝑖𝑟 ), nacelle direction (𝑁𝑑𝑖𝑟 ), inside and outside
temperature (𝐼𝑡𝑚𝑝 and 𝐸𝑡𝑚𝑝), the pitch angle of the three blades
(𝑃𝑎𝑏1, 𝑃𝑎𝑏2, and 𝑃𝑎𝑏3), reactive power (𝑃𝑟𝑡𝑣), and active power
(𝑃𝑎𝑡𝑣 , the target variable). We provide SHAP [15] feature impor-
tance scores in Figure 1. A key observation is that the importance
of the features will change depending on the forecast horizon, for
short-term predictions the wind speed is crucial, however, for pre-
dictions two days ahead, other features such as the ID (i.e., which
turbine it is) are more important.

Feature Engineering. We begin by removing the wind and nacelle
direction features. These two features have a minor influence on the
active power while being subject to quick and abrupt changes and
are consequently unreliable for longer-term forecasts. Moreover,
we remove the two temperature features as their feature impor-
tance is relatively low, see Figure 1. From the analysis, the internal
temperature has some positive correlation with 𝑃𝑎𝑡𝑣 , however, we
empirically found that removing it achieved better results. This
could be due to overfitting to the training data. The feature cor-
relations are illustrated in Figure 2. As can be observed, the three
pitch angle features are perfectly correlated with each other and
we thus merge these into a single feature by taking the maximum
pitch angle,

𝑃𝑎𝑏_𝑚𝑎𝑥 =𝑚𝑎𝑥 ( [𝑃𝑎𝑏1, 𝑃𝑎𝑏2, 𝑃𝑎𝑏3]). (1)
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Figure 3: Overview of the MDLinear method.

For the active power 𝑃𝑎𝑡𝑣 , we simply set any negative values to
zero. However, our two methods differ slightly in the preprocessing
of the reactive power 𝑃𝑟𝑡𝑣 , MDLinear uses its absolute value while
XTGN uses the following logic

𝑃𝑟𝑡𝑣 =


0, if 𝑃𝑟𝑡𝑣 < 0 and 𝑃𝑎𝑡𝑣 ≤ 0,
𝑁𝑎𝑁, if 𝑃𝑟𝑡𝑣 < 0 and 𝑃𝑎𝑡𝑣 > 0,
𝑃𝑟𝑡𝑣, otherwise.

(2)

Our final feature set is thus {𝑇𝑢𝑟𝑏𝐼𝐷,𝑊𝑠𝑝𝑑, 𝑃𝑎𝑏_𝑚𝑎𝑥, 𝑃𝑟𝑡𝑣, 𝑃𝑎𝑡𝑣}.
Any missing, unknown, or abnormal values in the raw data fol-
lowing the evaluation logic [30] are removed and subsequently
replaced by linearly interpolated values.

2.2 Modified DLinear
We introduce our first proposed approach in this subsection, MD-
Linear. The method is based on DLinear [27] which is a simple but
effective method that has been shown to outperform numerous
transformer-based models on multiple time series forecasting tasks.
By design, the method operates on univariate time series data. For
multivariate time series, the forecasts of each feature are thus inde-
pendent of the others. The method first decomposes the time series
into trend and residual components. Two one-layer linear networks
(𝑊𝑡 and𝑊𝑟 ) are then applied to the respective component before
the two results are merged into a final forecast output. Note that
there are two variants of DLinear, one where the weights𝑊𝑡 and
𝑊𝑟 are shared for all features and one where each feature learns sep-
arate weights. In our work, we use the variant with shared weights
(DLinear-S).

The original DLinear method does not directly take advantage of
information from supplementary features during forecasting and
insteadmainly relies on the historical values of the target time series.
We modify DLinear to exploit all available information by adding
an additional linear layer at the end to consolidate the information
from all input features and denote our method MDLinear. Figure 3
illustrates the complete method design.

2.2.1 Additional Feature Engineering. In addition to the feature en-
gineering introduced in subsection 2.1, MDLinear splits the𝑇𝑢𝑟𝑏𝐼𝐷
feature into 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 and 𝐼𝐷 . The clusters are constructed by adher-
ing to the wind turbines’ x-coordinates, while the 𝐼𝐷 is assigned
based on the y-coordinates. Within each cluster, the wind turbine
with the largest y-coordinate is assigned an 𝐼𝐷 of 1, and the one
with the lowest y-coordinate is assigned 𝑛𝑐 , where 𝑛𝑐 is the number
of wind turbines within the cluster. Figure 4 shows the cluster and
ID assignments for all 134 wind turbines.

Figure 4: Wind turbine cluster and ID assignments.

Figure 5: MDLinear train and forecast strategy.

We further create a new feature 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑎𝑣𝑔 using the assigned
clusters. For cluster 𝑐 with a set of wind turbines 𝐶 , we have

𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑎𝑣𝑔𝑐 =
1
𝑛𝑐

𝑛𝑐∑︁
𝑖=1

𝑃𝑎𝑡𝑣𝐶 (𝑖) , (3)

where 𝑛𝑐 is the number of wind turbines in 𝑐 and 𝑃𝑎𝑡𝑣𝐶 (𝑖) the wind
power of the 𝑖-th wind turbine in 𝐶 . Note that 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑎𝑣𝑔 has the
same value for all wind turbines within the same cluster (for the
same timestep).

2.2.2 Multi-horizon Training and Forecasting. Training a single
model to make future forecasts is not always advantageous. Short-
term and long-term patterns can vastly differ and a model that
focuses on the full horizon may fail to capture important short-term
patterns. Therefore, in MDLinear, we train four separate models
with increasing forecast horizons [72, 188, 216, 288] andmerge these
to create a final prediction. The last predicted 72 timesteps of each
model𝑚 are used. Figure 5 illustrates the procedure.
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Figure 6: The framework of XTGN. The inputs are first transformed by the gated temporal convolution module (Gated TCN,
detailed in the left figure) followed by a 2D convolutional layer and a linear layer. An information diffusion mechanism (shown
in the dashed box) is performed only during the inference phase to get a reliable wind power prediction.

2.3 Extreme Temporal Gated Network
Inspired by the idea of converting a forecasting problem into a
pattern-matching task [11, 12], we consider a robust learning frame-
work, extreme Temporal Gated Network (XTGN), to extract implicit
representative patterns in the observational data. We present the
proposed method in Figure 6 and elaborate on it in the following.

The dynamical chaotic grid system produces complicated fea-
tures with sudden jumps and uncertain wind power generation
with strong randomness [23, 30], making it difficult to generate
accurate forecasts. To quickly respond to varying wind power pat-
terns and abruptly changes caused by external reasons such as wind
turbine renovation or active power controlling, we apply a Tempo-
ral Convolutional Network (TCN) [10] based framework to acquire
the necessary information on existing representative patterns and
then generalize it for forecasting.

Although RNN-based approaches have been proven to be able
to process sequential data, the recursive manner still suffers from
defects such as vanishing gradient and being time-consuming. On
the contrary, the stacked dilated causal convolution layers [26]
allow TCN to achieve long temporal range receptive fields and alle-
viate the vanishing gradient problem. Mathematically, the temporal
representation at layer 𝑖 is calculated as,

𝑥 ∗𝑊 =

𝐾−1∑︁
𝑠=0

𝑊 (𝑠)𝑥 (𝑖 − 𝑑 × 𝑠), (4)

where ∗ denotes a convolution operator, 𝑥 ∈ R𝑀 is a 1D sequence
input,𝑊 ∈ R𝐾 is the learnable convolution filter and 𝑑 is a hyper-
parameter that controls the skipping sparsity.

The gating mechanism was introduced in TCN to allow better
information flow through layers [2], and it takes the form

ℎ(𝑥) = tanh(𝑥 ∗ 𝜃1 + 𝑏) ⊙ 𝜎 (𝑥 ∗ 𝜃2 + 𝑐), (5)

where ⊙ is the element-wise product, and the tangent hyperbolic
function tanh(·) and the sigmoid function 𝜎 (·) are used to control
the ratio of information to forget or allow into the next layer. To
generate probable varying patterns that are directly related to the
downstream forecasting task, the output of the Gated TCN layer
is then passed to a 2D convolutional layer followed by a linear
operator.

Moreover, an information propagation scheme is used during the
inference phase to mitigate the negative effects of atypical data on
the prediction error. To be specific, the obtained values from the last
linear layer are corrected by a neighborhood aggregation to develop
amore accurate prediction. Considering the observation that nearby
wind turbines exhibit similar wind power patterns, it is natural
to describe the underlying graph structure of the system using a
distance matrix. Here, we generate a 𝑘 nearest neighbor (𝑘-NN)
graph based on the cosine similarity [22] between the geographic
location 𝑔𝑙 for each wind turbine pair (𝑖, 𝑗),

𝑆𝑖 𝑗 =
𝑔𝑙𝑇
𝑖
𝑔𝑙 𝑗

∥𝑔𝑙𝑖 ∥∥𝑔𝑙 𝑗 ∥
. (6)

For each wind turbine, the 𝑘 nearest neighbors following the above
cosine similarity are chosen to construct the 𝑘-NN graph. The
adjacency matrix is denoted as 𝐴. Then we perform information
diffusion over the graph to merge information from the node neigh-
borhood to get the final forecasts. By considering the neighbors’
state, the predictions can respond effectively to some irregular con-
gestion and abruptly changing patterns. Despite there being various
information diffusion mechanisms [4, 8], we aggregate informa-
tion from only first-order neighbors to ensure high computational
efficiency. In this way, we get a reliable wind power prediction,

𝑌 𝑡 = 𝐴(𝑊𝑜 × Conv2D(h(x)) + bo) (7)
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Figure 7: A single prediction result for a wind turbine.

where𝑊𝑜 and 𝑏𝑜 are learnable parameters in the linear layer. Note
that other forms of diffusion process can be easily fitted into our
framework, such as Random walk [17, 19].

2.4 Fused Model
We consolidate the predictions from MDLinear and XTGN into a
fused forecast. We denote the predictions for a single wind turbine
at timestep 𝑡 as 𝑌𝑚 ∈ R288×1 and 𝑌 𝑡 ∈ R288×1 for MDLinear and
XTGN, respectively. We empirically found that a simple averaging
of the two forecasts at each timestep achieves robust results, see
Section 3.2. The fused forecast for each wind turbine is thus

𝑌 =
𝑌𝑚 + 𝑌 𝑡

2
. (8)

The process is illustrated in Figure 7 which depicts a typical
288-length prediction for a single timestep of a single wind turbine.

3 EXPERIMENTS
In this section, we present some results using the small provided
test sample containing 14 days of data. We run a sliding window
of length 288 and a step size of 10 to create a set of 145 forecast
instances, each with a historical window of length 288. All scores
in this section are from this offline test data.

3.1 Experimental Setup
3.1.1 Parameter Settings. In MDLinear, the length of the historical
time window used as input is set to 50 and the time series decom-
position is done by learning the trend using a moving average with
a window size of 25. Four different models are trained using the
multi-horizon strategy described in Section 2.2.2.

XTGN is directly trained for two days-ahead forecasting and
uses two days as the historical time window, a.k.a. 288 consecutive
historical data points (𝑀 = 288) are used to forecast wind power
generation in the next two days (𝑇 = 1, 2, · · · , 288). Note that the
input feature set is different from MDLinear model and only four
features are used: {𝑊𝑠𝑝𝑑, 𝑃𝑎𝑏_𝑚𝑎𝑥, 𝑃𝑟𝑡𝑣, 𝑃𝑎𝑡𝑣}. To explicitly cap-
ture fine-grained temporal embedding from the input sequence,
we apply 2 blocks in which each block contains 7 layers of Gated

TCN with dilation factors [1, 2, 4, ..., 64], respectively. In the infer-
ence phase, we utilize the cosine similarity function to construct
an adjacency matrix 𝐴 based on the 𝑘 = 50 nearest neighbors.

For both methods, all features are z-score normalized based on
the mean and standard deviation of the training data to ensure a
stable training procedure. The first 90% of the data for each wind
turbine is used as training data while the remaining 10% is used for
validation. We apply a masked loss function where any missing,
unknown, or abnormal values are masked away following the eval-
uation scheme logic [30]. MDLinear uses the average of RMSE and
MAE while XTGN utilizes MAE loss.

Themodels are trained for amaximum of 100 epochs with a batch
size of 32 and make use of early stopping with a patience of 3 to
avoid overfitting. The Adam optimizer [7] is used for training, with
an initial learning rate at 0.001 for MDLinear and 0.003 for XTGN,
both with a weight decay of 0.0001. MDLinear further applies an
adaptive learning rate strategy where the learning rate gets divided
by 10 after 10 epochs.

3.1.2 Evaluation Metrics. For wind turbine 𝑖 at time 𝑡0, the RMSE
and MAE are computed as

𝑅𝑀𝑆𝐸𝑖𝑡0 =
1
288

√√√288∑︁
𝑡=1

(𝑌𝑡0+𝑡 − 𝑌𝑡0+𝑡 )2, (9)

𝑀𝐴𝐸𝑖𝑡0 =
1
288

288∑︁
𝑡=1

|𝑌𝑡0+𝑡 − 𝑌𝑡0+𝑡 |, (10)

where 𝑌𝑡0+𝑡 and 𝑌𝑡0+𝑡 is respectively the predicted and true power
output at time 𝑡0 + 𝑡 with 𝑡 ∈ [1, 288]. Note that any values that are
missing, unknown, or abnormal in the original data are ignored in
the computation of RMSE and MAE by setting𝑌𝑡0+𝑡 −𝑌𝑡0+𝑡 = 0. The
final score is the average of RMSE and MAE over all wind turbines

𝑠𝑐𝑜𝑟𝑒 =
1
2

𝐾∑︁
𝑘=0

134∑︁
𝑖=1

𝑅𝑀𝑆𝐸𝑖
𝑇 (𝑘) +𝑀𝐴𝐸

𝑖
𝑇 (𝑘) , (11)

where 𝐾 is the number of instances to evaluate the model with and
𝑇 a set of 𝐾 timestamps to predict.

3.1.3 Baselines for Comparison. In addition to our proposed fused
model and its two component methods, we provide results on addi-
tional baselines. First, we include a naive baseline predicting the
average train 𝑃𝑎𝑡𝑣 value for each wind turbine and a baseline using
a moving average with a window size of 288. Note that both these
baselines predicts identical values for the whole 288 length forecast
window for a single timestep 𝑡 . LightGBM [6] is also added as a
baseline as it has shown strong results in various prediction tasks.
Finally, we also include the provided GRU and GNN baselines [30].

3.2 Results and Analysis
The offline scores of the baselines and our proposed method as
well as its component methods are presented in Table 1. The infer-
ence times shown are for running the full test set. For reference,
MDLinear using a single model with a forecast horizon of 288 is
included which performs significantly worse than the complete
method. From the table, we can observe that the offline scores of
the fused model are worse than some of the baselines, however,
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Table 1: Offline scores and inference times for the methods.

Method RMSE MAE Score Time (s)

Historical average 56.72 47.86 52.29 121
Moving average 61.56 50.62 56.09 127
GRU 55.13 45.77 50.45 409
GNN 55.39 47.15 51.27 245
LightGBM 53.05 44.89 48.97 4,035
MDLinear (single model) 56.74 48.32 52.53 4,63

MDLinear 53.40 45.53 49.46 1,384
XTGN 54.54 46.50 50.52 227
Fused model 53.74 45.86 49.80 1,420

Table 2: Different fusion strategies. For the time splits, the
method in parentheses is used for the first timesteps.

Method RMSE MAE Score

Time split 72:216 (MDLinear) 54.24 46.09 50.17
Time split 72:216 (XTGN) 53.74 45.94 49.84
Time split 188:188 (MDLinear) 53.95 45.90 49.92
Time split 188:188 (XTGN) 54.02 46.13 50.07
Average 53.74 45.86 49.80

the fused model is more robust and thus performed the best on the
online evaluation.

How the merging is done in the fused model is critical to the final
model performance. An assessment of various methods is presented
in Table 2. In addition to using the average of the forecasts at each
timestep, we evaluate using the prediction of one of the models for
the initial segment and the other model for the remaining timesteps.
As shown in the table, using the average forecast values achieves
the best performance of the evaluated strategies.

4 CONCLUSION
We introduce an ensemble framework for wind power forecasting
by combining two effective approaches. One considers the prob-
lem using a linear model MDLinear, and the other model XTGN
converts the forecasting problem as a pattern-matching task. The
MDLinear model is designed based on time series decomposition,
which encourages the model to incorporate temporal dynamics in
the predictions. In the XTGN model, we use a TCN-based module
to explore implicit representative patterns in the observational data
and design an information diffusion mechanism to create accurate
predictions. Our method achieves excellent performance in the
Baidu KDD Cup 2022 challenge and appears to get a reliable robust
wind power forecast in dealing with atypical data.
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