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ABSTRACT
Renewable energy has drawn growing attention and wind power
forecasting is becoming increasingly important to optimize the oper-
ations of wind farms. Numerous methods have been used to forecast
wind turbine powers, including numerical weather prediction, sim-
ulation, statistical time series forecasting, machine learning, deep
learning and hybrid methods. Spatial information of wind turbines
has been utilized to enhance forecast accuracy. In this work, we de-
veloped a hybrid machine learning model composed of a lightGBM
model for middle-term forecasts(24-48 hours) and a multi-variate
LSTM model for short-term forecasts(0-24 hours). Spatial informa-
tion of turbines was implicitly incorporated in the LSTM model
by enforcing hierarchical coherence constraints and applying a
self-attention output layer trying to catch the interactions among
turbines. The multi-variate LSTM model was implemented in Pad-
dlePaddle. Code has been uploaded to https://github.com/cdzhang/
wind_power_forecast.
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1 INTRODUCTION
The consumption of renewable energy has become increasingly
fast in recent years, including wind, solar and hydrogen energy.
Among them, wind power generation is relatively simple to real-
ize because of its wide availability and uncomplicated mechanical
energy transformation. However, due to the instability of weather
and wind speed, the power generated by wind fluctuates greatly,
which in turn affects the operation of regional power grids [1, 3].
Therefore, an effective wind power prediction method is essen-
tial to find the most economical solution for grid operation. This
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can help power dispatch departments organize power generation
optimization plans, and thereby improve reliability.

Wind power forecasting is usually regarded as a complex task
due to the variability and stochastic characteristics of wind speed
and internal turbine controls. The mainstream models for wind
power forecasting include numerical weather prediction, statistical
time series model like ARIMA[6] and Kalman Filtering[11]. Mul-
tiple machine learning methods have been used for wind power
forecasting, like SVM [19], wavelet analysis[10] and fuzzy logic[7]
methods. Deep learning methods have also been used for wind
power forecasting recently[16]. Hybrid models are becoming in-
creasingly popular as they can exploit the advantages of each model
based on their own characteristics[17, 20], and thus achieve supe-
rior performance[15].

According to forecast horizons, wind power forecasting problems
can be classified into ultra-short-term forecasting(minutes), short-
term forecasting(hours), middle-term forecasting (days) and long-
term forecasting(months). Different methods have advantages for
specific forecasting horizons [13].

Spatial information of turbines has been exploited for wind
power forecasting. KNN methods was used to find nearest neigh-
bors of turbines and features of these neighbors were then feed into
the encoder part of a GRU-based sequence-to-sequence model[9].
Attention-based graph neural network structure was proposed to
learn the interactions among turbines and their complex physical
properties[2].

Before applying model training and prediction, anomaly detec-
tion and data pre-processing are significant as they affect the per-
formance of the whole forecasting task. Various anomaly detection
methods have been proposed to enhance forecast performance or
for wind turbine failure detection[14, 18].

This article proposes a hybrid methods based on lightGBM and
multi-variate LSTM forwind power forecasting, with novel anomaly
detection methods and implicit incorporation of spatial information.
The main contributions are summarized as follows:

• Combination of lightGBM model and multi-variate LSTM
model for middle-term and short-term forecasts respectively
can take advantage of suitable model characteristics at spe-
cific forecasting horizons.

• Applied a method to find the wind speed - max power curve
of turbines solely from historical data by solving an opti-
mization problem. The curve is decided by a few support
vectors and can effectively detect anomalies in the data.

• Spatial information of wind turbines was implicitly incor-
porated in our method through hierarchical coherence con-
straints and self-attention. To the best of our knowledge, this
is the first time hierarchical coherence constraints are used
to utilize spatial structures of turbines.
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The dataset used is from KDD CUP 2022 [21].

2 SOLUTION OVERVIEW
Our method is based on the ensemble of lightGBMmodel and multi-
variate LSTM model. The pipeline is as follows:

(1) Anomaly detection and data preprocessing: A lightGBM
model was trained to fill in missing and abnormal wind
power values, and noise was added to alleviate overfitting.
Temperature values were fixed as there are some unreal val-
ues which might be caused by broken thermometers. Curves
of max turbine power to wind speed was trained for each
turbine and power higher than this curve was marked as
abnormal and adjusted to the respective max value on the
curve. Wind direction respect to some zero point was ad-
justed based on some simple assumptions.

(2) Feature engineering: Features based on minutes of the day,
wind direction, wind speed, temperature and historical wind
power were calculated by window sliding statistics and ex-
tracted by tsfresh.

(3) Forecasting: multiple models of lightGBM and LSTM were
trained using different hyper-parameters, and during the
forecasting step, multiple forecasts were generated by both
types of models. A lightGBM model has a forecast horizon
of 288, and generates forecasts of 144-288 steps ahead by
rolling forecast. A LSTM model forecasts h steps ahead si-
multaneously but different models have different horizons.

(4) Ensemble: The median forecasts of LSTM models with the
same forecast horizon were firstly calculated and then the
median values of different forecast horizons were concate-
nated to form the final forecast of 1-144 steps ahead. Fore-
casts of 145-288 steps ahead were averaged from LSTM and
lightGBM models.

(5) Rule-based adjustment: Based on the assumption that wind
power will not change rapidly in the very near future if wind
turbines are working properly, forecasts of the ultra-short
future were adjusted by rules to satisfy this constraints.

Spatial information of turbines was implicitly incorporated by
enforcing hierarchical coherency constraints and adding a self-
attention layer along the turbine axis in the LSTM model.

3 DETAILED METHOD
3.1 Exploratory Data Analysis
In order to better design solutions, we conducted detailed explo-
ration and analysis of data. Some conclusions are as follows:

• According to the official anomaly standard, the proportion
of anomalies in this dataset is nearly 30%, so the processing
of anomalies is particularly important.

• Power generation is mostly affected by the wind speed at
the current moment. The relationship of max power and
wind speed is a very regular curve. It is suggested that when
wind speed is fixed, there is a corresponding max power
generation rate, however, there may be other factors, like
the wind turbine is not along the wind direction and the
pitch angles are not appropriate, that cause the power to be
below its maximum value.

• Some turbines report extremely abnormal temperature val-
ues which might be caused by broken thermometers. The
temperature has a robust daily seasonality component but
in the training data, the mean temperature per day slowly
decreases which might indicate the data has been collected
from summer towinter. Under fixedwind speed, temperature
has a negative correlation with power generation, possibly
caused by higher air density at lower temperature. However,
power generation has a positive correlation with tempera-
ture because temperature is positively correlated with wind
speed.

• When wind speed is greater than 2.5𝑚/𝑠 , the angle between
wind direction and turbine Wdir is around 0°. But the wind
direction respect to north Wdir+Ndir is nearly randomly
distributed and we suppose this is because the absolute zero
angle is different for different turbines.

• The absolute value of reactive power is positively correlated
with active power.

Our general conclusion of the task from exploratory data analysis
was that only short-term wind power can be effectively foretasted,
and for the middle-term forecast, appropriate mean values can be
foretasted at best, as it is difficult to forecast wind speed hours later.

3.2 Anomaly Detection and Data Preprocessing
Based on official instructions [21], wind power may have zero
values, missing values, unknown values, and outliers for different
reasons, which can be treated as data anomalies in general. The
given dataset has nearly 30% anomalies and these anomalies may
bring negative influences. For example, extreme values will make
time series constrained to a narrow region after standardization, and
these anomalies will cause difficulty for model learning temporal
dependencies .

Table 1 shows our anomaly analysis and preprocessing methods.
Specifically, Wdir and Ndir has occasional measurement errors. For
example, in day 49 and 50, Wdir values of many turbines are not
within the range [−180◦180◦]. On the other hand, only turbine 2
had an abnormal Ndir from 3:40 to 12:00 in the day of 185. For the
anomalies of Wdir and Ndir, linear interpolation was used. In addi-
tion, there are ten turbines recorded extreme Etmp, possibly caused
by broken thermometers. Since the external temperature should
be similar for turbines at the same time, turbines reported Etmp
out of 3 times standard deviation were treated as anomalies and
adjusted to the median values at the current time. The anomalies of
Pab1/2/3 were difficult to repair, so we only used the normal ratio
of this value as a feature.

More anomaly detection and data processing methods will be
described in detail in the remaining part of this section.

3.2.1 Filling in Unknown Wind Powers. As there are nearly 30%
unknown values for wind powers, a lightGBM model was trained
from data with normal power values, and was then used to predict
those unknown values. We also added noise by sampling from the
distribution of normal data at the same wind speed to alleviate
overfitting.

3.2.2 Wind Speed - Max Power Curve. The relation of turbine
power and wind speed was deduced from physical laws as shown
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Table 1: Anomalies Overview and Preprocessing Methods

data Anomalies Abormal Percentage Possible Causes Preprocessing Methods

Wspd <0 0 - -
Wdir out of [-180,180] 0.002% Occasional Measurement Error Interpolation
Ndir out of [-170 170] 0.3% Occasional Measurement Error Interpolation

Wind direction(Wdir + Ndir) nearly random distribution - zero angle difference wind angle adjustment
Etmp out of [𝜇𝑡 − 3𝜎𝑡 : 𝜇𝑡 + 3𝜎𝑡 ] 6% Broken Thermometer Median Filling

Pab1/2/3 >89 20.9% Power Scheduling Drop

Patv

<0
Wspd>2.5 and Patv<0
Pab1/2/3 >89
Wdir is out of [-180 180]
is out of [-170 170]

29%
Power Scheduling
Turbine Renovation
Measurement Error

treat <0 as 0
LightGBM
wind speed - max
power curve adjustment

in equation 1[15],

𝑃𝑒 =
1
2
𝜌𝑆𝑣3𝐶𝑝 (1)

where 𝜌 is air density, 𝑆 is turbine sweap area, 𝑣 is wind speed and
𝐶𝑝 is efficiency of wind turbine. However, actual power is depen-
dent on operating conditions, such as the turbine Patv, moisture,
temperature, etc. Especially, 𝐶𝑝 is dependent on the wind speed 𝑣 .
For the dataset of KDD2022[21], we formulated a hypothesis: for a
fixed wind speed 𝑣 , there is a maximum power 𝑃𝑚𝑎𝑥 = 𝑓 (𝑣 ;𝜃 ), and
under different operational conditions, the actual power 𝑃 ≤ 𝑃𝑚𝑎𝑥 .
Data points with 𝑃 > 𝑓 (𝑣 ;𝜃 ) were regarded as abnormal values
and the corresponding 𝑃 were adjusted to 𝑓 (𝑣 ;𝜃 ).

Inspired by the theory of sparse kernel machines, we inferred
appropriate envelopes 𝑃𝑚𝑎𝑥 = 𝑓 (𝑣 ;𝜃 ) for each turbines from data.
Here the problem was formulated a bit differently: The data was
split into𝐺 histograms according to wind speed. The center of each
group is 𝑣𝑔, 𝑔 = 1, 2, . . . ,𝐺 . For this dataset, 𝑓 (𝑣 ;𝜃 ) is a nonlinear
function described by equation 2.

𝑓 (𝑣, 𝜃 ) = 𝑓 (𝑣 ;𝛼, 𝛽, 𝑠) =
{
𝛽𝑣𝛼 , 𝑣 < 𝑠

𝛽𝑠𝛼 , 𝑣 ≥ 𝑠
(2)

𝜃 = (𝛼, 𝛽, 𝑠) was calculated by minimizing the function in equa-
tion 3.

𝜃∗ = argmin
𝜃

[
𝐶

∑︁
𝑛,𝑛∈𝑔

(𝑃𝑛 − 𝑓 (𝑣𝑔 ;𝜃 ))+

+
∑︁
𝑔

(𝑓 (𝑣𝑔 ;𝜃 ) − max 𝑃𝑛
𝑛∈𝑔,𝑃𝑛≤𝑓 (𝑣𝑔 ;𝜃 )

)
]

(3)

where𝐶 is a hyper-parameter describing the penalty of data points
above the curve.

Under this formulation, the max power to wind speed envelope
only depends on a very small subset of the data points(the support
vectors): those above the curve and those just below it, and invariant
to other data samples. The minimization problem was solved by
scipy package in python. The result showed that the 𝛼 values of
nearly all turbines were around 2, instead of 3 in equation 1. Sample
curves are shown in figure 1.

3.2.3 Wind angle adjustment. According to the official report and
discussion replies, wind direction respect to north is the sum of

Figure 1: Relationship of max turbine power and wind speed.
Yellow lines represent max power to wind envelope. Data
points above the envelope were treated as anomalies adjusted
to respective values on the envelope.

nacelle position and wind direction respect to the nacelle, as shown
in figure 2. However, we found that at a time snapshot, the wind di-

Figure 2:Wind direction respect to north is the sumof nacelle
position and wind direction respect to the nacelle.

rections were nearly randomly distributed (figure 3(a)). We suppose
this was because the zero angles of each turbines were different.
So the wind directions at each turbine were adjusted based on a
very simple assumption: the wind directions were the same for all
turbines on the farm if the wind speed is greater than 10𝑚/𝑠 . During

2022-08-02 10:32. Page 3 of 1–7.
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the adjustment, the mean of a group of angles was calculated by
transforming each angles to their respective unit vectors on a 2D
surface and the mean angle is the angle of the vector sum of all the
unit vectors.

Figure 3: Wind direction at day 1 06:20 of the training data.
a: original distribution of wind directions at each turbines. b:
wind directions after adjustment.

After angle adjustment, most of the wind angles at the same
time were much similar, expect for only a few outliers, as shown in
figure 3(b).

3.3 Feature engineering
Features used for our methods are summarized as follows:

• Wind Direction: The wind direction reflects the projection
angle of the wind speed in a specific direction. Since it is a
circular feature, its sin and cos values are used as features
for models.

• Minutes of the day: This is also a circular feature, and
𝑠𝑖𝑛

2𝜋𝑚𝑡

1440 , 𝑐𝑜𝑠
2𝜋𝑚𝑡

1440 are used as features for models, where𝑚𝑡

is minutes of the day.
• Max power features: The max power based on the current
wind speed, and the difference of max power and actual
power was used as features.

• Sliding window Features: For values wind speed, external
and internal temperature, active and reactive powers, max
power values and wind directions, we calculated the mean,
maximum, minimum, variance, and median values within
the history window.

• tsfresh Features: Since the manual features mining may
not be comprehensive enough, the tsfresh library [5] was
used to automatically generate time series features. How-
ever, automatic feature generation is memory expensive. So
feature selection was performed according to the correla-
tion with target values. The final top 59 features generated
include fourier entropy and coefficient, auto-correlation co-
efficient, etc.

3.4 Hierarchical coherency constraints
Turbine locations were implicitly incorporated in multi-variate
LSTM model by two mechanisms: hierarchical coherency con-
straints and a final self-attention layer.

Nearby turbines were clustered into groups. The power of groups
and turbines should satisfy hierarchical coherence that the sum
powers of turbines within a group should be equal to the total power

of the group. For example, as shown in figure 4, 𝑥𝑐1 =
134∑

𝑖=113
𝑥𝑖 . The

constraints can be expressed by equation 4, where 𝑥 is the power
of all turbines and groups and 𝐴 is a matrix solely decided by the
hierarchical structure of the turbines and groups.

𝐴𝑥 = 0 (4)

The power of all turbines and groups were predicted simultaneously
with multi-variate LSTM, and then pass through a coherence layer,
after which, constraints equation 4 will be satisfied.

Figure 4: Wind turbines were separated into clusters based
on their locations.

3.5 Models
3.5.1 LightGBM Model. LightGBM model [8] was used to forecast
145-288 steps ahead, a kind of long sequence time-series forecasting
(LSTF). The model predicts the 288th value ahead, and continuous
forecasts were achieved by rolling prediction. LightGBM uses the
histogram algorithm to find the optimal split point. Also it uses
the Gradient-based One-Side Sampling (GOSS) which retains all
samples with large gradients, and then random sample among sam-
ples with small gradient. In addition, for the sparsity of the feature
space, Exclusive Feature Bundling (EFB) is designed to reduce the
feature dimension. Although compared with XGBoost [4], Light-
GBM sacrifices a bit of accuracy but it reduces the risk of overfitting
and increases training and inference speed. For LSTF tasks, espe-
cially when the data distribution is unknown, LightGBMwith better
generalization performance is more preferable. In addition, the par-
allel optimization of LightGBM improves the efficiency of iterative
experiments.

2022-08-02 10:32. Page 4 of 1–7.
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Figure 5: Multi-variate LSTM model with hierarchical coherence constraints.

3.5.2 Multi-variate LSTM with Hierarchical Coherence Constraints.
Our secondmodel structure is a multi-variate sequence-to-sequence
model based on LSTM structure. Two LSTM layers were included in
our model. The first layer forecasts the multi-variate turbine powers
for each turbines and turbine clusters. The second layer forecasts
the global wind speed, the median wind speed of all turbines.

The geological structure was incorporated implicitly in the LSTM
model through twomechanisms: hierarchical coherence constraints
and a self attention layer. 𝑥𝑡 is the forecasts of multi-variate time
series of all turbines and clusters 𝑡 steps ahead by the first LSTM
layer. But the coherence constraints described by equation 4 are
now not satisfied. 𝑥𝑡 is then passed into a hierarchical coherence
layer. The output of this layer 𝑥 ′𝑡 satisfies the coherence constraints
with minimal change of 𝑥𝑡 , as shown in equation 5, where subscript
𝑡 is dropped for convenience.

𝑥 ′ = argmin
𝑥 ′

1
2
| |𝑥 ′ − 𝑥 | |

s.t. (5)
𝐴𝑥 ′ = 0

The minimization problem 5 can be solved analytically using
Lagrange multiplier by minimizing 𝐿(𝑥 ′, 𝜆) = 1

2 | |𝑥
′ − 𝑥 | | + 𝜆𝐴𝑥 ′,

and the solution is shown in equation 6.

𝑥 ′ = (𝐼 −𝐴𝑇 (𝐴𝐴𝑇 )−1𝐴)𝑥 (6)

where I is the identity matrix .
Finally, forecasts at different horizons are concatenated and

passed into a self-attention layer, trying to capture the relations
among different turbines and groups. The multi-variate LSTM

model was implemented in PaddlePaddle[12], an open-source deep
learning platform from industrial practice.

3.6 Rule-based Adjustment
Results of both lightGBM and multi-variate LSTM models showed
that, as models minimize the loss of all horizons of their forecasts
during training, the forecasts fluctuate very little and just try to
learn the mean of wind power, especially for lightGBM and LSTM
with long forecasting horizons. Based on the assumption that wind
power will not change rapidly in the very near future if wind tur-
bines are working properly, forecasts of the ultra-short future were
adjusted by rules to satisfy this constraints, as shown in equation 7.

𝑦𝜏 = 𝑥𝜏 +𝑤𝜏 (𝑦𝑏 − 𝑥𝜏 ) (7)

𝑤𝜏 =
(𝜏 − Γ)2

Γ2
, 𝜏 ∈ [0, Γ]

where 𝑥𝜏 is the forecast 𝜏 steps ahead; 𝑦𝜏 is the adjusted forecast;
𝑤𝜏 is the weight of adjustment; 𝑦𝑏 is the mean historical power
start from 𝑏 steps back; Γ is the maximum length of modification.
Before the adjustment, the abnormal ratio in historical power will be
calculated and if this value is higher than a threshold, the forecasts
will not be adjusted. Figure 6 shows the rule-based adjustment of
lightGBM forecast on the test dataset.

4 EXPERIMENTS
In this section, we will not as usual show our method comparing
with other methods on multiple datasets, but compare and discuss
the effect of different model configurations based on results on the
same datasets.
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Figure 6: Rule-based Adjustment on the prediction of the test
dataset by lightGBM

4.1 lightGBM model
For lightGBM models, 214 days of data was used for training, 16
days for validation and the final 15 days for test. The baseline light-
GBM model used historical wind power and wind speed features
of sliding window statistics. As shown in table 2, filling unknown
wind power by another lightGBM model decreased offline perfor-
mance but increased online performance. Adding max power - wind
speed adjustment and features somehow reduced offline error. And
tsfresh features compromised offline but slightly increased online
performance.

4.2 Multi-variate LSTM model
For multi-variate LSTM model, we show the results where first 109
days of data was used for training and then 16 days for validation.
And 200 random samples from the last 15 days were used for test.
The large time span between training and test data might show the
effect of data drift in this forecasting task.

As shown in table 3, attention among turbines increased of-
fline performance. Then adding hierarchical coherence constraint
slightly increased forecast error but the difference was not sig-
nificant. Actually, for the online dataset of Phase I, hierarchical
coherence constraint decreased the error from 41.79 to 41.37.

Multi-variate LSTM model trained by different horizons showed
different forecasts for the same input data. An example is shown in
figure 7. Generally, model trained with shorter forecasting horizons

Figure 7: An instance of forecasts by models trained with
different horizons.

will have better performance for short-term forecasts, as shown by
figure 8. Thus concatenating forecasts of models trained by different
horizons might be a better solution than a single model.

Figure 8: Forecast errors of 12 steps ahead of model trained
with different forecasting horizons.

4.3 Final Model Configurations
The model configurations were updated sequentially, not based on
searching of optimal combinations. Due to the versatile nature of
the data, many results were not consistent on different datasets
and conclusions were hard to draw. Thus the final solution were
selected as follows, without elimination of subjective bias: multiple
lightGBM and LSTM models were trained with different hyper-
parameters. The median forecasts of LSTM models with the same
horizons were firstly calculated and then concatenated to form the
LSTM ensemble forecast. The mean forecasts of lightGBM models
formed the lightGBM ensemble forecast. The 1-144 steps of LSTM
ensemble forecast and the mean value of LSTM and lightGBM
ensemble forecasts 145-288 steps ahead were concatenated to form
the final forecast.

50 samples were randomly selected from last 31 days of data.
The results of lightGBM, multi-variate LSTM model and their com-
bination on both offline and online (phase 3) datasets are shown in
table 4.

5 CONCLUSION
In this work, we developed a hybrid method combined of lightGBM
and multi-variate LSTM for wind power forecasting of individual
turbines in a wind farm. The lightGBM forecasts middle-term steps
ahead (24-48hours) and accurately forecast the mean value of fu-
ture wind power. The LSTMmodel forecasts short-term steps ahead
(within 24 hours). Spatial information of turbines were implicitly
incorporated into our methods by enforcing hierarchical coherence
constraints and adding a self-attention layer along the turbine axis.
We developed novel anomaly detection methods like max power to
wind speed curve based on support vectors to enhance forecasting
accuracy. For future work, we will explicitly include spatial infor-
mation by graph attention, and will develop appropriate recurrent
model structures for multi-variate time series composed of similar
single time series, like the powers of wind turbines.
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Table 2: LightGBM Experiments

Model Configuration(successive) Offline MAE Offline RMSE Offline Score Online Score offline p-value

Baseline 39.37 42.83 41.10 41.92(Phase I) -
Filling Unknown 41.85 44.92 43.39 41.02(Phase I) 1.3e-64

Max Power-Wind Speed 41.31 44.42 42.87 46.57(Phrase III) 1.6e-5
tsfresh Features 43.04 45.99 44.51 46.54(Phrase III) 4.2e-36

Table 3: Multi-variate LSTM Experiments

Model Configuration(successive) Offline MAE Offline RMSE Offline Score offline p-value

Baseline 46.18 47.82 47.00 -
Attention 44.47 45.88 45.17 8e-12

Hierarchical Coherence 44.79 47.49 45.64 0.07

Table 4: Test Results of Final Method

dataset lightGBM multi-variate LSTM ensemble

offline 40.88 42.95 41.20
online 46.73 45.87 45.64
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