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ABSTRACT
Accurate wind power forecasting is essential in coupling with its
increasing penetration in power systems due to the high volatile
nature. In this paper, we present our Long-Short Term Forecasting
solution to the Spatial Dynamic Wind Power Forecasting Chal-
lenge at KDD Cup 2022. The task is to forecast 10 minutely wind
power of 134 turbines from a wind farm for the next 48 hours,
given the relative locations and internal status. We break the task
to the nowcasting (0-3h) and short term (3h - 48h) part, targeting
a more precise recent forecasting utilizing the inertia of wind and
mean prediction in longer forecast horizons respectively. We use
LightGBM only in the submission, along with several post process-
ing tricks including a simple spatial ensemble. The source code is
available at https://github.com/wenwei-pku/kddcup2022.
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1 INTRODUCTION
Over the decades, wind power has played a substantial role in re-
newable energy sector. Due to the high fluctuations of wind at
turbine height level, wind power usually reveals randomness, un-
certainty intermittency and no clear pattern, as curated in Figure 1.
The high penetration of wind power, thanks to the roaring installed
capacity, has posed significant challenges on power systems. There-
fore, accurate wind power forecasting is vital in system operation,
dispatching and maintenance.

Numerous approaches on wind power forecasting has been pro-
posed in recent years, among which the short term forecasting
ranging from minute to a few days predominates. For example, day-
ahead forecasting (24-48h) is essential in systems scheduling, while
nowcasting (0-3h) helps in real-time grid operations and market
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Figure 1: A slice of real power of Turbine 103. It shows the
high volatile nature of wind power with no clear pattern.

clearing[1]. Considering the inertia of wind, nowcasting could be
regarded as an extrapolation task of wind power time series hence
short term time series forecasting techniques prevail at this stage.
As forecast horizon grows, pure time series methods lose the track
of wind pattern and Numeric Weather Prediction (NWP) takes over.
NWP uses mathematical models of the atmosphere and oceans
to predict the weather based on current weather conditions1. De-
rived from physical laws, NWP is able to provide relative accurate
trend of wind and boost the accuracy of forecasting. It’s widely
recognized as one of the indispensable inputs in this scenario[2].

KDD Cup 2022 is a combination of nowcasting and day-ahead
forecasting. However, the absence of NWP makes it barely able
to predict the real trend other than the mean. To address these
challenges, we propose Long-Short Term Forecasting models,
featuring a more precise prediction in the next a few hours and a
plausible global average estimate in the long run.

The remainder of this paper is arranged as follows. Sections 2
presents the solution overview. Details are illustrated in section 3,
followed by experimental results curated in section 4.

2 SOLUTION OVERVIEW
Our Long-Short Term Forecasting approach is based on two
sources of information:Mean and Inertia. Since the competition’s
forecasting horizon is two days, we treat the first 3 hours (18 data
points) and the remaining 45 hours (270 data points) separately as
the inertia and the mean phase. We build two sets of gradient boost
tree models (LightGBM [3]) for forecasts of each phase respectively,
and LightGBM (LGB) is the only tool that we use. Though prolong-
ing the inertia phase over 3 hours might further improve our result,
the model size limits us from doing so. And we train an individual

1https://en.wikipedia.org/wiki/Numerical_weather_prediction

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://en.wikipedia.org/wiki/Numerical_weather_prediction


Conference’17, July 2017, Washington, DC, USA Wang Wenwei

model for each turbine to grab the slight difference between differ-
ent turbines. Spatial information also greatly helps us through two
simple and cheap spatial-based ensemble methods.

Figure 2: Long-Short Term Forecasting

3 DETAILED METHOD
The detailed method is presented in the following sections:

3.1 Data Preprocessing
The competition provides a dataset which retrieves from the SCADA
system of a wind farm. It records each of the 134 turbines’ opera-
tional data across 245 days. Besides the basic temporal information,
10 additional features (wind speed, wind direction, environmental
and inside temperature, nacelle direction, pitch angle of 3 blades,
reactiove power, active power) are also included.

The raw dataset has anomoly points, for instance, some ex-
tremely high values in Etmp and Wspd, which may disturb the
training process. We preprocess the dataset in following steps:

• remove outliers. For Etmp and Wspd, we calculate the 25
and 75 percentile values among the whole dataset, replacing
extra large or small values with 𝑛𝑎𝑛 and then using interpo-
lation.

• mask abnormal values. We mark a sample as abnormal
following rules in [4], i.e. if Wspd > 2.5 and Patv ≤ 0, or
Pab > 89◦ or Pab2 > 89◦ or Pab3 > 89◦, or Ndir > 720◦
or Ndir < −720◦, or Wdir > 180◦ or Wdir < −180◦. All the
abnormal data are masked.

3.2 Feature Engineering
The overall feature engineering phase consists of raw feature pres-
election and selected feature engineering. There are 13 features in
the raw training/inferencing dataset. TurbID, Day, and Tmstamp
are kept as id and time indicator features. Based on the principles
of physics and the unknown fluctuation nature of the prolonging
features, we select only Etmp, Patv, and Wspd as base features for
feature engineering. Following the relationship (1) between Wspd
and Patv, we make another base feature Wspd3.

𝑃 =
1
2
𝜌𝐴𝑉 3 (1)

We create three sets of features for the time series: Difference
Features, Lagging features, and Rolling statistics.

Twenty-four Difference Features are created for Etmp, Patv, and
Wspd each, which represent the feature difference between two
consecutive data points across the 4 hours time horizon. Here we
create 72 Difference features in total.

Lagging features are the 24 lagging values for Etmp, Patv, Wspd
and Wspd3 each, which stand for the raw feature in the closest 4
hours time horizon. Here we create 96 Lagging features in total.

Rolling statistics are calculated for Wspd, Wspd3, Etmp and Patv,
respectively. For the Rolling statistics, we calculate max, min, me-
dian, mean, std, skew as six statistics across rolling windows of
time horizon 3,6,36,144 points. Here we create 96 Rolling statistics
in total.

In addition, we create two hour-embedding features using sin
and cos functions and a prediction indicator feature to indicate the
prediction position among whole horizon 288.

In total we have 267 features for each sample.

Table 1: Features for Long short term modeling

Feature Type Feature Count

Difference Features 72
Lagging Features 96
Rolling Statistics 96

Hour embedding feature 2
Prediction indicator 1

3.3 Long-termWind Power Forecasting Model
The long-term forecasting model (LGB) has an output length of
288 points (2 days). Take X𝑘

𝑖−144×14:𝑖 as the input series of the past
14 days of k-th turbine, we call the feature engineering process to
generate the features for the input of LGB model:

Z𝑘𝑖 = FeatureEngineer(Xk
i−144×14:i) (2)

We concat ([:; :]) the feature Z𝑘
𝑖
and prediction indicator 𝑗 ( 𝑗 =

1, 2, ..., 288) to get the input of LGB model. 𝑦𝑘
𝑗
is the prediction of

k-th turbine at 𝑗 point.

𝑦𝑘𝑗 = LGB( [Zki ; j]) (3)

The long-term model is expected to grasp the global pattern of
the series. The wind power generated at wind turbines is strongly
correlated to the wind speed (Wspd), however, the wind is a chaotic
system, and the wind speed on a 2-day time scale is difficult to
be modeled. When visualizing the output of the long-term model,
we observe that the prediction is a quasi-horizontal line, which
represents the global mean of the training data. We also test deep
model (including TCN and LSTM) and similar output patterns are
observed. Because of the limitation of model size, we employ 134
long-term models in total (one model for one turbine).
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3.4 Short-termWind Power Forecasting Model
The short-term forecasting model (LighGBM) is trained using the
same feature engineeringmethodwith long-termmodel. The output
length of the short-term model is 18. The short-term model consists
of 18 sub-model:

𝑦𝑘𝑗 = LGBj (Zki ) (4)

where 𝑗 = 1, 2, ...18. The j-th LGB sub-model is used for the pre-
diction at j-th point (𝑦𝑘

𝑗
). So we totally have 134 × 18 sub-models

(one model for each turbine at each point). Based on the concept
of inertial wind, the wind speed in short-term is predictable. We
replace the first 18 points given by long-term models with that
of short short-term models. This method will bring a consistent
improvement when we have it tested offline.

3.5 Parameters Tuning
The hyperparameters of LGB models are determined with a 3-fold
cross-validation on the whole dataset. We use customized hyperpa-
rameter for both short-term model and long-term model applied
on each turbine. Finally, the models are trained with the whole
245-day dataset released.

The parameters for long-term LGB models are tuned for each
turbine. We provided the training parameter for turbine 1 to 12
in the following Table 2, and the whole set of parameters for all
turbines can be seen in the uploaded codes. The parameters for
short-term LGB models are provided in Table 3.

Table 2: Long term model parameters

Parameter value

learning_rate 0.03
boosting_type gbdt

objective regression_l2
metric mae

num_leaves 63
min_data_in_leaf 100
feature_fraction 0.7
bagging_fraction 0.6
bagging_freq 5
min_split_gain 0.05

seed 16
n_estimators 80

3.6 Simple Spatial based Ensemble Tricks
Due to model size and running time constraints, we choose two
simple, fast, and effective spatial based ensemble tricks.

The first one is the spatial closest turbine models ensemble: since
we train individual model for each turbine and they are all built
with the same features, we also use the most and the second closest
turbines’ models to forecast the wind power for each turbine. The
final predicted wind power for each turbine at each time point are
𝑌 (𝑡) = 0.7 ∗ 𝑀 (𝑋 (𝑡)) + 0.15 ∗ 𝑀 ′(𝑋 (𝑡)) + 0.15 ∗ 𝑀 ′′(𝑋 (𝑡)). The
M,M’,M” are trained model for each turbine and their closest and
second closest turbine.

Table 3: Short term model parameters

Parameter value

learning_rate 0.05
boosting_type gbdt

objective regression
metric mae

num_leaves 40
min_data_in_leaf 60
feature_fraction 0.3
bagging_fraction 0.7
bagging_freq 5
max_depth 5

seed 16
num_iterations 64

Figure 3: closestmodel ensemble and distance value ensemble

The second one is the spatial distance turbine value ensemble.
This ensemble trick is based on the fact that most turbines produce
similar wind power. Adding the mean of its neighbor turbine’s pre-
dicted values will stabilize our prediction with almost no extra time
costs. Here we select the neighbor turbines within 3k distance of our
predicted turbine. The final predicted wind power for each turbine
at each time point is 𝑌 (𝑡) = 0.5 ∗ 𝑌 (𝑡) + 0.5 ∗𝑚𝑒𝑎𝑛(𝑌𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑡))

3.7 Post Process
We applied a 1.08 multiplier factor for the 18 predicted points from
the short-term forecasting model and a 1.18 multiplier factor for
the resting 270 predicted points from the long-term model for each
turbine. In Figure 4, we observe that the mean of Patv change
according to the month (we give a fake ’month’ to the training
dataset). The model is trained on the 245-day training set and thus
grasps the global mean of the whole dataset. However, the test set
may have a different mean compared to the training set. So it is
necessary to introduce a multiplier to fix the final prediction.
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Figure 4: Mean of Patv and Wspd by month

4 EXPERIMENT PARTS
4.1 Offline Test Dataset
As the online submission quota is limited, we prepare an offline
dataset to test the effectiveness of each model and trick.

The test dataset is generated according to the official report [4]
about evaluation. We select 14 consecutive days and roll with a
stride between 10minutes and 900minutes randomly, finally getting
21 instances.

4.2 Experiment results
The average score of 21 instances is recorded.We compare the result
of baseline and with several optimization and tricks in Table 4.

Table 4: Model performance under different settings on sum-
mer test data. Each row builds on all the previous rows.

Model setting offline test score improvement

fixed parameters -49.07 -
+ short term model -48.11 0.96
+ tuned parameters -48.05 0.06

+ spatial based ensemble -47.95 0.10
+ whole ratio*1.18 -47.02 0.93
+ first18 ratio*1.08 -46.95 0.07

The baseline model is a global LGBRegressor with fixed parame-
ters reported in Table 3 and it results a local score of 49.07. A global
model tends to capture the mean value of the long forecasting pe-
riod, and is less appropriate to short term forecasts. Introducing
the set of Short-term forecasting models significantly improves
the score by 0.96. Parameter tuning further further enhances our
performance by 0.96.

As nearby turbines usually generate similar amounts of patvs,
we propose the spatial based ensemble model and it modifies the
result by 0.1. Observing that the mean patv fluctuates in seasons,
we adjust the magnitude of our forecasts, which totally helps to
raise the score by 1.

Figure 5 demonstrates predictions under various boostingmodels
and tricks. The blue line is the ground truth, and the first 144 points
is taken as the input history data. The orange line is the predictions
with fixed parameters, which shows almost a mean value. The
green line is the predictions with short models and shows a better
performance on the first 10 time steps. The spatial based ensemble
strategy gives the more stable red line prediction, and the post
process with a multiplier factor makes the prediction closer to the
true mean value.

Figure 5: Predictions under boosting models and tricks

Our offline experiments indicates the effectiveness of the meth-
ods and tricks introduced in Section 3. We test some combinations
online and receive the results in Table 5.

Table 5: Online test socres. a: fixed parameters, b: tuned pa-
rameters, c: short term models, d: spatial based ensemble, e:
whole ratio*1.18, f: first18 ratio*1.08.

Model setting online test score

a+b -45.79
a+b+e -45.50
b+c+e -45.42

b+c+d+e -45.29
b+c+d+e+f -45.27

5 CONCLUSION
In this paper, we adopt a Gradient Boosting Tree based model for
the wind power forecasting for next 48 hours. We build a short-term
forecasting model to capture the inertia of wind and a long-term
model to grasp the global mean. Our framework (LGB as backbone
model combined with several post process tricks) achieved the 9th
prize in Kddcup 2022.
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