DLinear Makes Efficient Long-term Predictions

Chaoqun Su
sucq@mail.ustc.edu.cn
University of Science and Technology of China
Hefei, Anhui, China

ABSTRACT

The variability of wind power supply can present substantial chal-
lenges to incorporating wind power into a grid system. Thus, Wind
Power Forecasting (WPF) has been widely recognized as one of
the most critical issues in wind power integration and operation.
We are expected to accurately estimate the wind power supply of
a wind farm based on Spatial Dynamic Wind Power Forecasting
dataset(SDWPF).

This work addresses the wind power forecasting problem with
the help of time-series decomposition techniques. In particular, af-
ter the trend and seasonal features are extracted, two one-layer
FCN are adopted to transform and fuse the features for future
forecasting. We extract the "Patv" column of 134 wind turbines
from SDWPF and reshape it into a new numpy array with a shape
of (35280,134). After dividing the dataset, we employ a SeriesDe-
comp module for Seasonal-Trend decompsition to get seasonal and
trend series [1]. Two one-layer linear networks are employed to
model these two series for the forecasting task [2].The model makes
multivariate predictions and outputs 134 series of predicted val-
ues, that is, the Patvs of 134 wind turbines. Code is available at
https://github.com/ChaoqunSu/kddcup.

KEYWORDS

Long-term Time Series Forecasting, Seasonal-Trend Decomposition,
DLinear, Linear Network

ACM Reference Format:

Chaoqun Su. 2022. DLinear Makes Efficient Long-term Predictions. In Pro-
ceedings of ACM Conference (Baidu KDD CUP 2022). Baidu KDD CUP 2022,
4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Wind power is a kind of clean and safe source of renewable energy,
but cannot be produced consistently, leading to high variability.
Such variability can present substantial challenges to incorporating
wind power into a grid system. To maintain the balance between
electricity generation and consumption, the fluctuation of wind
power requires power substitution from other sources that might
not be available at short notice (for example, usually it takes at
least 6 hours to fire up a coal plant). Thus, WPF has been widely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Baidu KDD CUP 2022, July 2022, Technical Paper

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

recognized as one of the most critical issues in wind power inte-
gration and operation. There has been an explosion of studies on
wind power forecasting problems appearing in the data mining and
machine learning community.

The task of Baidu KDD CUP 2022 is Spatial Dynamic Wind
Power Forecasting. As we know, this challenge task is essentially
a time series forecasting(TSF) task. An illustration of a wind farm
is shown in Figure 1. Over the past several decades, TSF solutions
have undergone a progression from traditional statistical methods
and machine learning techniques to deep learning-based solutions.
Transformer is arguably the most successful sequence modeling
architecture, which demonstrates unparalleled performances in
various artificial intelligence applications, such as natural language
processing and speech recognition. Recently, there has also been
a surge of Transformer-based solutions for time series analysis.
Some notable models for the TSF task include: Informer [3] (AAAI
2021 Best paper), Autoformer [1] (NeurIPS 2021) and the recent
FEDformer [5] ICML 2022). But are Transformers really effective
for long-term time series forecasting? A simple model DLinear [2]
outperforms existing complex Transformer-based models in most
cases by a large margin. DLinear decomposes the time series into
a trend and a remainder series and employs only two one-layer
linear networks to model these two series with direct multi-step
forecasting.

The organizer present a unique Spatial Dynamic Wind Power
Forecasting dataset(SDWPF) [4] that provides the wind power data
of 134 wind turbines from a wind farm over half a year with their
relative positions and internal statuses. The dataset provide the
information about the wind, temperature, turbine angle and histor-
ical wind power. The time range of the dataset is over half a year.
There are two unique features for this competition task different
from previous WPF competition settings: 1) Spatial distribution:
this competition provides the relative location of all wind turbines
given a wind farm for modeling the spatial correlation among wind
turbines. 2) Dynamic context: the weather situations and turbine in-
ternal status detected by each wind turbine are provided to facilitate
the forecasting task.

Our team employ DLinear which only has two one-layer linear
networks to finish the challenge task, the remainder of this technical
paper is organized as follows. Sec. 2 presents the solution overview
about how to finish the challenge task. Then, we present detailed
method in Sec. 3. Experimental details are then shown in Sec. 4.
Finally, Sec. 5 concludes this technical paper.

2 SOLUTION OVERVIEW

As noted in the introduction, in order to be able to use DLinear well
to solve this task, we first need to process the dataset. we extract
the "Patv" column of 134 wind turbines from SDWPF and reshape
it into a new numpy array with a shape of (35280,134). We take the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Baidu KDD CUP 2022, July 2022, Technical Paper

‘ Patv, Patv, Patv, Patv,
A A |
5i\ ;i\ /i\ AN

I [
‘ Patv; Patvg Patv; Patvg

N D

‘ Patv, Patv,, Patv,, Patv,,

I D

‘P

Figure 1: An illustration of a wind farm, Baidu KDD CUP
2022.[4]

data of the first 155 days as the training set and the data of 80 days
from day 155 to day 235 as the validation set.

In this part of the model, We employ a SeriesDecomp module to
decompose the time series data to obtain seasonal and trend series.
And then two one-layer linear networks are employed to model
these two series for the forecasting task. One linear network is used
to model the trend series and another linear network is used to
model the seasonal series. The sum of the outputs of the two linear
networks serves as the final predictions.

3 DETAILED METHOD

3.1 Dataset

The raw dataset (wtbdata_245days.csv) is 245 days of data including
13 features from 134 wind turbines. At first of all, we fill missing
values with zeros and replace all negative values in the "Patv"
column with zeros. We only need the last feature variable (i.e. the
target variable "Patv"). Then, we extract the column of "Patv" with
a shape of (4727520, 1) ,where 4727520 = 134*245*144, we reshape
it into a numpy array with a shape of (35280, 134) , where 35280 =
245*144.

We take the data of the first 155 days as the training set and the
data of 80 days from day 155 to day 235 as the validation set. The
training set is used to compute the normalized mean and variance.
All the datasets are replicated in two copies, one for input and one
for label. In addition, for better evaluation during model validation,
we need to keep the original data corresponding to the label in
order to remove bad predictions when calculating the loss. Finally,
the __getitem__() method of the Dataset class has three return
values, seq_x, seq_y, input_y.

It is worth mentioning that we have followed the data augment
method used in the official baseline.

3.2 Model

From the experiments in previous works [1][3][5], decomposition
can largely enhance the performance of Transformer-based meth-
ods in time series forecasting, which is model-agnostic and may
boost other models, such as our linear model. Specifically, we use

Chaoqun Su

a moving average kernel on the input series to extract the trend-
cyclical component of the time series. The difference between the
original series and the trend component is regarded as the seasonal
component.

Accordingly, DLinear is a combination of a decomposition scheme
and a linear network. It first decomposes a time series data into a
trend component X; and seasonal component Xs = X — X;. Then,
two one-layer linear networks are applied to these two series.

Remainder

H Linear W h Forecasting Output

HS E RTXC
X e RT*C
|—>| Linear W, |J

H, € RT*C

Look-back Window -t il -
= Xs €]RL)(C

Trend

X, € RIXC

Figure 2: The whole structure of DLinear.

The overall structure of DLinear is shown in Figure 2. The whole
process is: X = Hy + Hy, where H; = WsXs and H; = W, X, are
the decomposed trend and remainder features. Wy and W; are two
linear layers, as illustrated in Figure 3.

Futurcf timesteps

History L timesteps

Figure 3: One Linear Layer.

4 EXPERIMENTAL DETAILS

The project has eight python files and two folders. One folder
namely "checkpoints” is used to save the model and if the folder
does not exist it will be created automatically. Another one folder
"logs" is used to log the hyper parameters each time the model is
trained. All python code files are detailed below.

4.1 prepare.py

The prepare.py file implements the prep_env() interface to prepare
the experimental settings. Next we explain the meaning of each
hyper parameter. See the tablel below for details.

4.2 dataset.py

There are three classes "Scaler", "WPFDataset", "TestDataset" in
dataset.py.

"Scaler" is used to calculate the mean and variance of the data and
save them. When we need normalization or inverse normalization,
just call method "transform” or "inverse_transform" in the class.

DLinear Makes Efficient Long-term Predictions

Table 1: The Meanings of Hyper Parameters in prepare.py

Hyper Parameter

Meanings

path_to_test_x

data_path Folder path to store data
filename data file name
input_len Length of sequence input to model
output_len Length of sequence output from model(288)
label_len Length of overlap between input and output
start_col Start column of data acquisition
capacity Number of wind turbine
patient Determine earlystopping
day_len Sequence length in one day(144)
train_size Days to use as training set
val_size Days to use as validation set
is_debug Whether the model is being trained
checkpoints Folder path is used to save the model
logs_path Folder path is used to save the logs

num_workers
train_epochs

Online test set path

Number of threads to load data (batch)
Number of epochs

batch_size Size of each batch
log_per_steps Steps to record logs
Ir Learning rate
Ir_adjust Patterns of Ir changes, default "typel"
gpu Gpu id to use
name Loss function, default "FilterMSELoss"
pred_file Python file to predict
framework PaddlePaddle

"WPFDataset" is used to process the raw data and divide the
training set and validation set. The hyper parameters "data_path",
"filename", "flag", "size", "train_days", "val_days"need to be deter-
mined when instantiating the class. Operation when "TestDataset"

is instantiated can refer to "WPFDataset" .

4.3 DLinear.py

The model is defined in DLinear.py. There are two classes "SeriesDe-
comp”, "WPFModel" in it. "SeriesDecomp" implements the function
of series decomposition to get seasonal and trend component. Hyper
parameter "DECOMP"(i.e."kernel _size", 18 by default) is required
when instantiating "SeriesDecomp". The class "WPFModel" is very
simple, since there are only two linear layers that make separate pre-
dictions for seasons and trends from the class "SeriesDecomp"The
sum of the outputs of the two linear networks serves as the final
predictions

4.4 common.py

Two functions "Adjust learning rate", "EarlyStopping" are imple-
mented in common.py. When adjusting the learning rate, there are
two modes to choose from according to the specific environment.
The class "EarlyStopping" implements the functions of saving the
model and judging whether to stop training.

Baidu KDD CUP 2022, July 2022, Technical Paper

4.5 loss.py

In loss.py file, the bad input is filtered out on the basis of MSE to
achieve a unique loss function "FilterMSELoss". Filtering out inputs
that meet the following conditions does not count as loss:

e Pabl > 89° or Pab2 > 89° or Pab3 > 89°

o Ndir > 720° or Ndir < -720°

e Widr > 180° or Widr < -180

e Patv < 0 and Wspd > 2.5

The above conditions are implemented by paddle. logical _or() and
logical—and().

4.6 utils.py

The function _create_if_not_() is implemented in utils.py to create
a folder, which is convenient to call when saving models and logs.

4.7 optimization.py

The optimizer Adam is defined in optimization.py, which is conve-
nient to call when training the model.

4.8 train.py

Create train_loader, val _loader from train_dataset and val_dataset,
and augment the data before feeding it into the model. The method
of data augment follows from the baseline, which is Regression
SMOTE.

The data fed to the model is batch_x with a shape of(batch_size,
134, input_len). Similarly, the shape of the output of the model
is (batch_size, 134, output_len). Calculate loss using outputs and
labels and gradient descent with optimizer Adam.

On the other hand, during validation, the output of the model is
evaluated using function regressor_detailed_scores()(metrics.py).The
validation score determines the quality of the model. When the
score does not increase in the patience epoch, it will stop early and
save the best model.

4.9 predict.py

When making inference, we need to first load the model from the
checkpoints folder. Load the online test data from "path_to_test_x",
and then We use the normalization parameters of the training set
to normalize the online test set. Feed test data into the model to get
predictions.

5 HOW TO RETRAIN OR INFER?

Code is available at https://github.com/ChaoqunSu/kddcup. Before
retraining or inferring, please install the libraries as follows:

e PaddlePaddle-gpu==2.3.0
e Pandas
e Numpy

You can finish it by "pip install -r requirements.txt".

If you want to retrain the model, please make the corresponding
changes to the hyper parameters of "prepare.py" according to your
needs first. And then "python train.py".

After training the model, you can view some information such
as hyper parameters during training and loss per epoch through
the .txt file in the "logs" folder.

Baidu KDD CUP 2022, July 2022, Technical Paper Chaoqun Su

If you want to make predictions, please specify the hyper param- [3] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,

eter "path_to_test_x " and then "python predict.py". and Wal?cai Zhgng. 2021. }nformer: Beypnd efﬁcient transformer for logg se-
quence time-series forecasting. In The Thirty-Fifth AAAI Conference on Artificial

Intelligence, AAAI 2021, Virtual Conference 35 (2021).
REFERENCES [4] Jingbo Zhou, Xinjiang Lu, Yixiong Xiao, Jiantao Su, Junfu Lyu, Yanjun Ma, and
Dejing Dou. 2022. SDWPF: A Dataset for Spatial Dynamic Wind Power Forecasting.
In Proceedings of The 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (Baidu KDD Cup 2022) (March 2022).
Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022.
FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series
Forecasting. In International Conference on Machine Learning (Feb. 2022).

[1] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series Fore-
casting. Advances in Neural Information Processing Systems, 34, 2021 (June 2021).

[2] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2022. Are transformers effective
for time series forecasting? (May 2022). https://doi.org/10.48550/arXiv.2205.13504

&

https://doi.org/10.48550/arXiv.2205.13504

	Abstract
	1 Introduction
	2 Solution Overview
	3 Detailed Method
	3.1 Dataset
	3.2 Model

	4 Experimental details
	4.1 prepare.py
	4.2 dataset.py
	4.3 DLinear.py
	4.4 common.py
	4.5 loss.py
	4.6 utils.py
	4.7 optimization.py
	4.8 train.py
	4.9 predict.py

	5 How to retrain or infer?
	References

