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ABSTRACT
In this technical report, we present our solution for the Baidu

KDDCup 2022 Spatial DynamicWind Power Forecasting Challenge.
Wind power is a rapidly growing source of clean energy. Accurate
wind power forecasting is essential for grid stability and the secu-
rity of supply. Therefore, organizers provide a wind power dataset
containing historical data from 134 wind turbines and launch the
Baidu KDD Cup 2022 to examine the limitations of current meth-
ods for wind power forecasting. The average of RMSE (Root Mean
Square Error) and MAE (Mean Absolute Error) is used as the evalu-
ation score. We adopt two spatial-temporal graph neural network
models, i.e., AGCRN and MTGNN, as our basic models. We train
AGCRN by 5-fold cross-validation and additionally train MTGNN
directly on the training and validation sets. Finally, we ensemble
the two models based on the loss values of the validation set as
our final submission. Using our method, our team BUAA_BIGSCity
achieves -45.36026 on the test set. We release our codes on Github 1

for reproduction.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Artificial intelligence.
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1 INTRODUCTION
Wind power is a rapidly growing source of clean energy. How-

ever, the dynamics and uncertainties of wind power can affect the
grid network’s system reliability. Therefore, accurate wind power
forecasting is essential for reliable energy generation and smooth
power system dispatching.

Baidu KDD Cup 2022 Spatial Dynamic Wind Power Forecasting
Challenge 2 presents a unique Spatial Dynamic Wind Power Fore-
casting dataset: SDWPF, which contains the wind power data of 134
wind turbines from a wind farm over half a year with their relative
positions and some dynamic context factors, such as wind speed,
environment temperature, and turbine internal status. This Wind
Power Forecasting (WPF) Challenge encourages the participants
to develop effective models to accurately estimate the wind power
supply of a wind farm at different time scales. The main difference
between this challenge and past wind power prediction tasks is that
the data provides the spatial distribution of turbines and various
types of dynamic contextual information, so this competition is
not a pure time series prediction task. The average of RMSE (Root
Mean Square Error) and MAE (Mean Absolute Error) is used as the
evaluation score.

In the literature, a series of works on wind power forecasting
have emerged. The mainstream wind prediction methods can be
divided into two main categories: classical statistical methods and
machine learning (or deep learning) methods. The classical sta-
tistical methods are mainly some time series forecasting models,
which are more dependent on the assumption of smoothness of the
time series. Yunus et al. [18] employ an autoregressive integrated
moving average (ARIMA) based frequency-decomposed model to
forecast short-term wind power. Recently, machine learning-based
models have been widely used in wind power forecasting tasks.
Wang et al. [15] use a support vector machine (SVM) to forecast
short-term wind power. With the development of graph neural
networks in recent years, the wind power forecasting task is no
longer treated as a simple time series forecasting task. Because, in
addition to the effects of wind speed, weather, and other factors,
the output power of neighboring wind turbines interacts with each
other and is spatially correlated. Graph neural networks (GNN) are
suitable for capturing non-Euclidean graph structure relationships.
For example, Li [13] integrate the GNN and Deep Residual Network
(DRN) for short-term wind power forecasting.

Our solution for this wind power forecasting task is also based
on the graph neural network. Specifically, we extend and combine
two spatial-temporal graph neural network models, i.e., AGCRN [1]

2https://aistudio.baidu.com/aistudio/competition/detail/152/0/introduction
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andMTGNN [16], for wind power forecasting. The spatial-temporal
graph neural network combines a graph neural network model and
a temporal neural network model, such as the recurrent neural
network (RNN) and 1D convolutional neural network (1D-CNN).
In this way, the temporal neural network captures the temporal
dependence between the wind power data of each single wind tur-
bine, and the graph neural network captures the spatial correlation
between the wind power data of multiple wind turbines. On top
of these two base models, we introduce a relative geographic dis-
tance graph and a semantic distance graph, allowing the graph
neural network to consider the interaction between wind turbines
from different perspectives. We can achieve accurate wind power
forecasting by capturing the dynamic spatial and temporal charac-
teristics in wind power data. Our solution achieves an overall score
of -45.36026.

2 PRELIMINARIES
In this section, we first introduce basic notations and prelimi-

naries used in this paper. Then we formalize the problem of wind
power forecasting.

2.1 Notations and Definitions
Definition 1 (Wind Turbine Farm). A wind turbine farm con-

tains 𝑁 wind turbines within a specific area, each constantly gen-
erating electricity. The Supervisory Control and Data Acquisition
(SCADA) system of the wind farm continuously records the power
generated by each wind turbine in the wind farm at a fixed time
interval.

Definition 2 (Wind Power Tensor). In this paper, we use 𝑿𝑡 ∈
R𝑁×𝐶 to denote the observation at time 𝑡 of 𝑁 wind turbines in
the wind farm, where 𝐶 is the length of the observation vector. The
observation includes active wind power, wind speed, etc., as described
in Section 4.1. In addition, we use 𝑿 = (𝑿1,𝑿2, · · · ,𝑿𝑇 ) ∈ R𝑇×𝑁×𝐶

to denote the wind power tensor of all wind turbines at 𝑇 time slices.

2.2 Problem Formalization
The wind power forecasting task aims to predict the wind power

supply of a wind farm in the future time given the historical obser-
vations. Formally, given the tensor 𝑿 observed on a wind farm, our
goal is to learn a mapping function 𝑓 from the observations of the
previous 𝑇 steps to predict the wind power supply of the future 𝑇 ′

steps as:

[𝑿 (𝑡−𝑇+1) , · · · ,𝑿𝑡 ]
𝑓

−→ [�̂� (𝑡+1) , · · · , �̂� (𝑡+𝑇 ′) ] . (1)

Note that the prediction result tensor �̂� ∈ R𝑇 ′×𝑁×1 contains only
one-dimensional features, i.e., the active power generated by each
wind turbine.

3 METHODS
In this section, we describe the two models used in this challenge.

3.1 AGCRN
Adaptive Graph Convolutional Recurrent Network (AGCRN) is

proposed in [1] NIPS2020. AGCRN consists of two adaptive mod-
ules to enhance Graph Convolution Network (GCN) and proposes

Figure 1: Overall Structure of AGCRN

the NAPL-GCN module: (1) a Node Adaptive Parameter Learn-
ing (NAPL) module to capture node-specific patterns; (2) a Data
Adaptive Graph Generation (DAGG) module to infer the inter-
dependencies among different time series automatically. To capture
temporal correlations in the data, AGCRN replaces the MLP lay-
ers of the Gated Recurrent Unit (GRU) [6] with the NAPL-GCN
module to capture both node-specific spatial and temporal correla-
tions in the time series. The overall structure of AGRCN is shown
in Figure 1. Here we modify the DAGG module and add a pre-
defined semantic distance graph of all turbines to directly capture
the semantic relationships between the time series of different wind
turbines. We stack several AGCRN layers as an encoder to capture
the spatial-temporal correlations in the wind power data. Finally,
we obtain the predicted wind power supply time series of all wind
turbines by applying a single linear transformation to project the
representation generated by the encoders.

3.1.1 Node Adaptive Parameter Learning (NAPL). GCN is widely
used to capture spatial correlations in data. According to [12], graph
convolution operation can be well approximated as:

𝒁 = (𝑰𝑁 + 𝐷− 1
2𝐴𝐷− 1

2 )𝑿𝑖𝚯 + 𝒃 (2)

where 𝐴 ∈ R𝑁×𝑁 is the adjacency matrix of the graph, 𝑫 is the
degree matrix, 𝑿𝑖 ∈ R𝑁×𝐶 and 𝒁 ∈ R𝑁×𝐹 are input and output of
the GCN layer,𝚯 ∈ R𝐶×𝐹 and 𝒃 ∈ R𝐹 are the learnable weights and
bias respectively. However, it is difficult to model diverse patterns of
all turbines with the shared𝚯 and 𝒃 . To learn node-specific patterns,
the NAPL module maintains a unique parameter space for each
turbine. Besides, instead of directly learning 𝚯 ∈ R𝑁×𝐶×𝐹 , which
is too large to optimize, this module learns two smaller parameter
matrix: a node embedding matrix 𝑬 ∈ R𝑁×𝑑 and a weight pool
�̃� ∈ R𝑑×𝐶×𝐹 , where 𝑑 is the embedding dimension and 𝑑 ≪ 𝑁 . In
this way, 𝚯 = 𝑬�̃� . We use the same operation for 𝒃 ∈ R𝑁×𝐹 , i.e.,
𝒃 = 𝑬�̃�, �̃� ∈ R𝑑×𝐹 . Finally, the NAPL-GCN module is calculated as:

𝒁 = (𝑰𝑁 + 𝐷− 1
2𝐴𝐷− 1

2 )𝑿𝑖𝑬�̃� + 𝑬�̃� . (3)

3.1.2 Data Adaptive Graph Generation (DAGG). The DAGG mod-
ule automatically infers the spatial dependencies between each pair
of wind turbines for the graph convolution operation. First, this
module uses the same learnable node embedding 𝑬 ∈ R𝑁×𝑑 as
the NAPL-GCN module for all wind turbines, where each row of
𝑬 represents the node embedding of a wind turbine. We directly
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(a) Semantic Distance Graph,𝑀=5 (b) Geographic Distance Graph, 𝜖 = 0.8

Figure 2: Different Adjacency Graphs

generate 𝐷− 1
2𝐴𝐷− 1

2 by multiplying 𝑬 and 𝑬𝑇 as:

𝐷− 1
2𝐴𝐷− 1

2 = softmax(ReLU(𝑬 · 𝑬𝑇 )), (4)

where softmax and ReLU are activation functions. During training,
the node embeddings 𝑬 will be updated automatically to learn the
hidden spatial dependencies among all wind turbines. Then, the
DAGG enhanced NAPL-GCN can be expressed as:

𝒁 = (𝑰𝑁 + softmax(ReLU(𝑬 · 𝑬𝑇 )))𝑿𝑖𝚯 + 𝒃 . (5)

3.1.3 Semantic Distance Graph. The DAGG enhanced NAPL-GCN
module can adaptively learn the spatial dependencies among all
wind turbines and the node-specific patterns among them. As a mul-
tivariate time series forecasting task, there is not only geographical
distance correlation between multiple time series but also semantic
similarity, i.e., time series similarity. Therefore, a semantic distance
graph is also considered for the graph convolution operation. We
compute the Dynamic Time Warping (DTW) distance [17] between
the historical wind power supply time series of each pair of wind
turbines and obtain a similarity matrix 𝐷𝑑𝑡𝑤 . Then, for each wind
turbine,𝑀 wind turbines with the top-𝑀 smallest DTW distance
are selected as neighbors to obtain a binary semantic distance graph
𝐴𝑑𝑡𝑤 , shown in Figure 2(a). Finally, we append 𝐴𝑑𝑡𝑤 to the DAGG
enhanced NAPL-GCN module as follows:

𝒁 = (𝑰𝑁 + softmax(ReLU(𝑬 · 𝑬𝑇 )) +𝐷− 1
2𝐴𝑑𝑡𝑤𝐷− 1

2 )𝑿𝑖𝚯 + 𝒃, (6)

where𝐷 is the degree matrix of𝐴𝑑𝑡𝑤 , i.e.,𝐷𝑖,𝑖 =
∑
𝑗 𝐴

𝑑𝑡𝑤
𝑖,𝑗

. Equation
(6) is the complete formulation of the graph convolution module
of the modified AGCRN model to capture spatial correlation. To
further capture temporal correlation, the AGCRN model replaces
the MLP layers in the GRU model with the graph convolution
module described above. We stack multiple AGCRN layers and
obtain the prediction results of the model by a linear transformation
on top of this.

3.2 MTGNN
Multivariate Time Series Forecasting Graph Neural Networks

(MTGNN) is proposed in [16] KDD2021. As shown in Figure 3,
the overall structure of MTGNN consists of multiple sequentially
connected gated temporal convolutional modules and spatial graph
convolutional modules, with additional residual connections to
make the model easy to train. Skip connections are added after each

Figure 3: Overall Structure of MTGNN

temporal convolution module to get the output hidden features.
Finally, the output module consists of two 1*1 convolutions is used
to project the hidden features to the desired output dimension, i.e.,
the length of the predicted time window 𝑇 ′. Here we modify the
adaptive graph structure learning module in MTGNN and instead
use a graph based on the relative geographic distance between wind
turbines.

3.2.1 Geographic Distance Graph. The relative geographic relation-
ship between wind turbines, such as the upstream vs. downstream
relationship, has a significant impact on the power generated by
wind turbines. Therefore, we calculate the Euclidean distance be-
tween two turbines based on the coordinates of each turbine given
in the data and obtain the geographic distance matrix 𝐷𝑔𝑒𝑜 . We
believe that the closer the turbines are to each other, the greater the
influence. Therefore, we define the following weighting formula
to obtain the geographic distance graph 𝐴𝑔𝑒𝑜 , which is shown in
Figure 2(b):

𝐴
𝑔𝑒𝑜

𝑖, 𝑗
=


1, exp(−

(𝐷𝑔𝑒𝑜
𝑖, 𝑗

)2

𝜎2
) ≥ 𝜖

0, exp(−
(𝐷𝑔𝑒𝑜
𝑖, 𝑗

)2

𝜎2
) < 𝜖,

(7)

where 𝐷𝑔𝑒𝑜
𝑖,𝑗

represents the distance between turbine 𝑖 and turbine
𝑗 , the 𝜎 is the standard deviation of distances, and 𝜖 is the threshold
to control the sparsity of the geographic distance graph.

3.2.2 Spatial Graph Convolution Module. The graph convolution
module used here is a mixhop propagation layer. Given the geo-
graphic distance graph𝐴𝑔𝑒𝑜 , themix-hop propagation layer consists
of two steps: (1) the information propagation step and (2) the infor-
mation selection step. There are𝐾 steps of information propagation,
each of which is calculated as follows:

𝑯 (𝑘) = 𝛽𝑯𝑖𝑛 + (1 − 𝛽)�̃�𝑯 (𝑘−1) , (8)

where 𝑯𝑖𝑛 is the input hidden states of this layer, i.e. the output of
the previous layer, 𝑯 (𝑘) is the output after the 𝑘-th propagation,
𝛽 is the hyperparameter which controls the proportion of input
features retained, and �̃� is the Laplace matrix of the geographic
distance graph, �̃� = �̃�−1 (𝐴𝑔𝑒𝑜 + 𝐼 ), �̃�𝑖,𝑖 = 1 +∑

𝑗 𝐴
𝑔𝑒𝑜

𝑖, 𝑗
.
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Table 1: Statistics of the SDWPF dataset

Days Interval # of columns # of turbines # of records

245 10 minutes 13 134 4,727,520

The information selection step is a weighted aggregation of the
results of the 𝐾-step propagation so that the model can make an
adaptive selection. The information selection step is defined as
follows:

𝑯𝑜𝑢𝑡 =
𝐾∑︁
𝑖=0

𝑯 (𝑘)𝑾 (𝑘) , (9)

where 𝐾 is the total steps of information propagation, 𝑾 (𝑘) are
learnable parameters, 𝑯𝑜𝑢𝑡 is the output hidden states of the mix-
hop propagation graph convolution module. In general, this mixhop
propagation graph convolution, which is a balance between the
nodes’ local information and the neighborhood information, avoids
the over-smoothing problem of the graph convolution model [4].

3.2.3 Gated Temporal Convolution Module. The temporal convo-
lution module consists of two dilated inception layers. The first
dilated inception layer is followed by a tangent hyperbolic (tanh)
activation function as a filter, and the other is followed by a sig-
moid activation function as a gate. The process of calculation is as
follows:

𝑻𝑜𝑢𝑡 = tanh(𝑻1) ⊙ sigmod(𝑻2) (10)
where ⊙ indicates the Hadamard product and 𝑻1, 𝑻2 are the output
of the two dilated inception layers, respectively.

The dilated inception layer is implemented with 1D convolu-
tional filters to deal with the time series data. Besides, to increase
the receptive field to handle longer time series and reduce model
complexity, we use a dilated convolution whose receptive field
grows exponentially by two as the number of hidden layers in-
creases. Besides, to discover temporal patterns with various ranges,
we use four different sizes of filters, including 1 × 2, 1 × 3, 1 × 6,
and 1 × 7. The outputs of the four filters are truncated to the same
length according to the largest filter and concatenated across the
channel dimension to get the model outputs.

4 EXPERIMENTS
4.1 Datasets

The SDWPF dataset 3 is collected from Supervisory Control and
Data Acquisition (SCADA) systems on wind turbines of a wind
farm owned by Longyuan Power Group [19]. The SCADA data are
sampled every 10 minutes from each wind turbine in the wind farm,
which consists of 134 wind turbines and the total time span of the
data is 245 days. The detailed information of the SDWPF dataset is
shown in Table 1.

This dataset contains important external features, such as wind
speed and external temperature, which can influence wind power
generation, as well as critical internal features, such as the inside
temperature, that indicate the operating status of each wind turbine.
A detailed introduction of the main attributes of the SDWPF dataset
is listed in Table 2.
3https://aistudio.baidu.com/aistudio/competition/detail/152/0/datasets

Figure 4: Spatial Distribution of Wind Turbines

In addition, the SDWPF dataset provides the relative position
for all wind turbines. Figure 4 characterizes the spatial distribution
of the 134 wind turbines in the wind farm.

4.2 Experimental Settings
4.2.1 Dataset Processing. To make full use of the SDWPF dataset,
we apply some feature engineering approaches to the dataset. First,
we select useful features for the model training and remove irrel-
evant or redundant features according to correlation coefficient
scores [2]. For attributes listed in Table 2 we select the following
five features, including𝑊𝑠𝑝𝑑 , 𝐸𝑡𝑚𝑝 , 𝐼𝑡𝑒𝑝 , 𝑃𝑟𝑡𝑣 and 𝑃𝑎𝑡𝑣 . Second,
we construct a new feature Δ𝑃𝑎𝑡𝑣 based on 𝑃𝑎𝑡𝑣 . At time step 𝑡0,
Δ𝑃𝑎𝑡𝑣 is the difference between 𝑃𝑎𝑡𝑣 at time step 𝑡0 and 𝑃𝑎𝑡𝑣 at
time step 𝑡0 − 1. In addition, before training, we use Z-score nor-
malization on the dataset to standardize the data inputs. Finally,
following the official release of the baseline code 4, we add a data
argument strategy. During the model training, we fuse the historical
time series of each wind turbine with data from different periods
of the same wind turbine to enrich the data samples and mitigate
the occurrence of overfitting.

4.2.2 Evaluation Metrics. Wind power forecasting aims to predict
the wind farm’s time series of wind power. However, due to the
underlying outliers in the SDWPF dataset, we evaluate the pre-
diction results for each wind turbine and then sum the prediction
scores as the final score of the model. In this wind power forecasting
challenge, our target is to predict a future length-288 wind power
supply time series, and the average of RMSE (Root Mean Square
Error) and MAE (Mean Absolute Error) is used as the evaluation
score. Therefore, at the time step 𝑡0, the evaluation score 𝑠𝑖𝑡0 for
wind turbine 𝑖 is defined as:

𝑠𝑖𝑡0 =
1
2
©«
√︄∑288

𝑗=1 (𝑿𝑖𝑡0+𝑗 − �̂�𝑖
𝑡0+𝑗 )

2

288
+
∑288
𝑗=1 |𝑿

𝑖
𝑡0+𝑗 − �̂�𝑖

𝑡0+𝑗 |
288

ª®®¬ , (11)

where𝑿𝑖
𝑡0+𝑗 is the ground-truth active power (𝑃𝑎𝑡𝑣) of wind turbine

𝑖 and �̂�𝑖
𝑡0+𝑗 is the predicted active power of wind turbine 𝑖 at time

step 𝑡0 + 𝑗 . At time step 𝑡0, the final score 𝑆𝑡0 is the sum of the
evaluation score on all 134 wind turbines.

4https://github.com/PaddlePaddle/PGL/tree/main/examples/kddcup2022/wpf_
baseline

https://aistudio.baidu.com/aistudio/competition/detail/152/0/datasets
https://github.com/PaddlePaddle/PGL/tree/main/examples/kddcup2022/wpf_baseline
https://github.com/PaddlePaddle/PGL/tree/main/examples/kddcup2022/wpf_baseline
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Table 2: Column names and their specifications of the SDWPF dataset

Column Column Name Specification

1 TurbID Wind turbine ID
2 Day Day of the record
3 Tmstamp Created time of the record
4 Wspd (m/s) The wind speed recorded by the anemometer
5 Wdir (◦) The angle between the wind direction and the position of turbine nacelle
6 Etmp (◦C) Temperature of the surounding environment
7 Itmp (◦C) Temperature inside the turbine nacelle
8 Ndir (◦) Nacelle direction, i.e., the yaw angle of the nacelle
9 Pab1 (◦) Pitch angle of blade 1
10 Pab2 (◦) Pitch angle of blade 2
11 Pab3 (◦) Pitch angle of blade 3
12 Prtv (kW) Reactive power
13 Patv (kW) Active power (target variable)

As for the outliers, we introduce a few specific treatments when
using this data. This section is the same as in the official introduction
technical report [19].

Zero values. There are some reactive power and active power
which are smaller than zeros. We simply treat all the values which
are smaller than 0 as 0.

Missing values. Some values at some time are not collected
from the SCADA system and will not be used for evaluating the
model.

Unknown values.At some times, wind turbines stop generating
electricity for external reasons, such as wind turbine modification
and/or active scheduling of power supply to avoid grid overload. In
these cases, the actual generated active power of the wind turbine
is unknown. These unknown values will not be used to evaluate the
model. In this challenge, two conditions are introduced to determine
whether the target variable is unknown:

• If at time step 𝑡0, there are 𝑃𝑎𝑡𝑣 ≤ 0 and𝑊𝑠𝑝𝑑 > 2.5, then
the actual active power 𝑃𝑎𝑡𝑣 of this wind turbine at time
step 𝑡0 is unknown;

• If at time step 𝑡0, there are 𝑃𝑎𝑏1 > 89◦ or 𝑃𝑎𝑏2 > 89◦ or
𝑃𝑎𝑏3 > 89◦, then the actual active power 𝑃𝑎𝑡𝑣 of this wind
turbine at time step 𝑡0 is unknown.

Abnormal values. If there are any abnormal values in any col-
umn of the data record, these values will not be used to evaluate the
model. In this challenge, we define two rules to identify abnormal
values:

• If at time step 𝑡0, 𝑁𝑑𝑖𝑟 > 720◦ or 𝑁𝑑𝑖𝑟 < −720◦, then the
actual active power 𝑃𝑎𝑡𝑣 of this wind turbine at time step 𝑡0
is abnormal;

• If at time step 𝑡0,𝑊𝑑𝑖𝑟 > 180◦ or𝑊𝑑𝑖𝑟 < −1808◦, then the
actual active power 𝑃𝑎𝑡𝑣 of this wind turbine at time step 𝑡0
is abnormal.

4.2.3 Training Loss. We choose to use the Huber loss [9] as the
training loss function of the two models because the Huber loss is
less sensitive to outliers than the squared error loss, which can be

expressed as follows:

L(�̂� ,𝑿 ) =


1
2
(�̂� − 𝑿 )2 |�̂� − 𝑿 | ≤ 𝛿

𝛿 |�̂� − 𝑿 | − 1
2
𝛿2 |�̂� − 𝑿 | > 𝛿

, (12)

where 𝛿 is the threshold parameter to control the sensitivity of
squared error, �̂� represents the predicted active power of all wind
turbines, and 𝑿 represents the ground-truth active power of all
wind turbines. Note that all the predicted and ground-truth values
have been treated with rules for outliers in Section 4.2.2.

4.2.4 Training and Model Settings. All experiments are conducted
on Ubuntu 18.04 with an NVIDIA GeForce 3090 GPU. We predict
a future length-288 wind power supply time series with the past
length-144 wind power supply time series, i.e., 𝑇 = 144,𝑇 ′ = 288.
We implement two models based on the PyTorch 5 framework. We
train our model using an Adam [11] optimizer with a learning rate
of 0.001. The batch size is 32, and the training epoch is 30. A clipping
gradient mechanism is used to stabilize the gradient for training
better, and the clipping gradient is set to 5. As for the Huber loss,
the threshold parameter 𝛿 is 5.

For training AGCRN, we stack two AGCRN layers and set the
hidden unit to 64 for all the AGCRN cells. The embedding dimen-
sion 𝑑 of each node is 10. In the semantic distance graph 𝐴𝑑𝑡𝑤 , the
number of similar wind turbines𝑀 is 5. For training MTGNN, we
stack three sequentially connected gated temporal convolutional
modules and spatial graph convolutional modules. The hidden di-
mension is 32, and the skip connection dimension is 64. The number
of information propagation steps 𝐾 is 2. The proportion of input
features retained in the Spatial Graph Convolution Module 𝛽 is
0.05, and the dilation exponential factor in the Gated Temporal
Convolutional Module is 2. In the geographic distance graph 𝐴𝑔𝑒𝑜 ,
the threshold to control the sparsity 𝜖 is 0.8.

4.3 Empirical Results
Table 3 summarizes the performance of models used in the fi-

nal submission. A 5-fold cross-validation strategy is adopted for
5https://pytorch.org/

https://pytorch.org/
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Table 3: Model Performance

Model Fold Val Loss

AGCRN

0 0.3218
1 0.4953
2 0.3570
3 0.2988
4 0.4085

MTGNN - 0.2512

training AGCRN. As shown in Table 3, we divide all the data into
five equal folds, then AGCRN is trained using the other four folds
and validated on the selected fold. MTGNN is directly trained on
the training set containing data of 214 days and validated on the
validation set containing data of 31 days.

After training, we leverage a naive weighted average to ensemble
the output of 5 AGCRN models according to the performance of
valid loss. Specially, we perform a weighted fusion of the prediction
results of the 5 AGCRN models based on the reciprocals of valid
losses, i.e., [0.3218−1, 0.4953−1, 0.3570−1, 0.2988−1, 0.4085−1]. In this
way, the larger the validation set loss, the smaller the proportion
of models in the ensemble model. After obtaining the ensembled
AGCRN model, we integrate the ensembled AGCRN model and
MTGNN model again according to the ratio of 4:6 and obtain the
final model prediction results. Using this method, we achieve -
45.36026 on the test set finally.

5 RELATEDWORK
The mainstream wind power forecasting methods can be divided

into two main categories: classical statistical methods and machine
learning (or deep learning) methods. The classical statistical meth-
ods are mainly some time series forecasting models. For example,
Han et al. [7] utilized the autoregressive moving average (ARMA)
model to forecast wind power. Recently, machine learning-based
models have been widely used in wind power forecasting tasks.
Wang et al. [15] used a support vector machine (SVM) to forecast
short-term wind power.

Deep learning-based algorithms are currently the dominant al-
gorithms for wind power forecasting. Chen et al. [5] used a joint
model composed of Long Short-Term Memory Network (LSTM)[8]
and Convolutional Neural Network (CNN) to forecast wind power
for multi-turbines. Liu et al. [14] also integrated a Long Short-Term
Memory Network (LSTM) with variational mode decomposition
for short-term wind power forecasting. In recent years, with the
development of graph neural networks (GNN), wind power fore-
casting is no longer treated as a simple time series forecasting task.
Researchers have begun using graph neural networks to capture
spatial correlations between wind turbines. For example, Khodayar
et al. [10] used LSTM to extract temporal features and a first-order
approximation of spectral graph convolution to capture spatial fea-
tures for wind power forecasting. Li [13] integrated the GNN and
Deep Residual Network (DRN) for short-term wind power fore-
casting. Bentsen et al. [3] proposed a modular framework using
attention-based graph neural networks for wind power forecasting.

6 CONCLUSION
In this technical report, we present our solution for the Baidu

KDDCup 2022 Spatial DynamicWind Power Forecasting Challenge.
This competition provides a large-scale dataset of 134 wind turbine
historical data, with the relative position of the turbines and various
dynamic contextual information. We extend two spatial-temporal
graph neural network models, i.e., AGCRN and MTGNN, as our
basic models. These models capture the data’s dynamic temporal
and spatial correlations, enabling accurate wind power forecasting.
We train AGCRN by 5-fold cross-validation and additionally train
MTGNN directly on the training and validation sets. Finally, we
ensemble the twomodels as our final submission. Using our method,
our team BUAA_BIGSCity achieves -45.36026 on the test set.
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