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ABSTRACT
Accurate wind power forecasting plays an important role in the
economic power system operating, and has attractedmore andmore
attentions in recent years. In this paper, we demonstrate a multi-
scale fusion method to make more accurate power predictions, with
a spatiotemporal network to extract more relevant correlations. By
fusion multi models trained with different datasets or with different
network configurations, our method benefits a high diversity and
thus makes more accurate wind power prediction. We rank 9th
in stage 3 of KDD Cup 2022, and the implementation and final
submitted models are available on https://github.com/luanhzh/wpf_
fusion.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
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1 INTRODUCTION
Wind power, as a kind of clean and renewable energy, plays an
important role in the daily power supply. Therefore, wind power
forecasting has become one of the important technical issues, and
attracted extensive research and attention in recent years [1]. On
the one hand, precise wind power forecasting is essential for making
energy planning and reserve in advance; on the other hand, since
wind power is essentially originated from natural wind energy, it
is highly volatile and stochastic, and thus there is a big challenge
in getting precise predictions.
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In essence, wind power forecasting is a time-series forecasting
problem, and all the existing forecasting methods [2] can be used for
wind power forecasting, such as ARIMA and ETS, etc. Meanwhile,
with the fast development of artificial intelligence technology, the
use of machine learning and deep learning models for wind power
forecasting is a potential way to get high-precision predictions.

[3] proposed a deep learning approach based on encoder-decoder
structure, which forecasts wind power generated by a wind turbine
using its spatial location relative to other turbines and historical
wind speed data, and is proved to be scalable and efficient with ex-
periments on two real word datasets. Similarly, [4] propose a novel
sequence-to-sequence model using the Attention-based Gated Re-
current Unit (AGRU) that improves accuracy of forecasting pro-
cesses, and demonstrated competitive capabilities in wind power
forecasting. On the other hand, [5] proposes a novel framework
with spatiotemporal attention networks (STAN) for wind power
forecasting, by capturing spatial correlations amongwind farms and
temporal dependencies of wind power time series, STAN achieved
influential performance. In addition, a novel two-stage forecasting
model based on the error factor, a nonlinear ensemble method and
the multi-objective grey wolf optimizer algorithm is proposed for
wind power forecasting, and improved both forecasting accuracy
and stability[6].

From the above reviewd papers, we found that seq2seq is a com-
mon selected network architecture when settling with wind power
forecasting , and capture spatiotemporal correlations is quite im-
portant to enhancing the forecasting performance, like employing
attention mechanism, which is first proposed in [7].

Wind power forecasting has not only attracted great interest in
academic research, some competitions are also organized by indus-
try, as a link between academic research and industrial applications.
A competition was organized in Kaggle to forecast wind power[8],
of which the main task was to forecast how much wind power that
could be generated from the windmill for the next 15 days. And
now, the KDD Cup 2022 wind power forecasting competition [9], is
another more challenging international event, and attracted more
than 2400 teams to participate. As the report describes, and also be
analyzed with dataset by us, there are the following challenges in
this competition:

a. It is hard to capture the inter-temporal patterns since the
correlation between time-series feature sequence is weak. The cor-
relation coefficient is nearly close to zero when the delay is greater
than 24 hours.

b. The cumulative error of prediction results over time would
have a great impact in the multi-step time series prediction task.

c. Relatively high proportion of missing values, unknown values
and outliers exist in the raw data. According to the given caveats
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about the data [9], there are about 20% rows needed to be filtered
out.

d. Spatio correlation and interference need to be considered,
which may influence the performance of model greatly.

e. The model may encountered the risk of low generalization,
since there may be a big difference in the distribution of the histor-
ical data from different time periods.

To solve these challenges, inspired by some sota methods[3][5],
we propose a multi-scale fusion method for wind power forecasting
with spatiotemporal attention networks, and themain contributions
are as follows:

• A Seq2Seq model with a spatiotemporal attention mecha-
nism was proposed for short-term wind power forecasting,
in which the Encoder module applied TCN/GRU to capture
longer historical time-series dependent information;

• Multi-scale fusion mechanism is employed to provide a high
diversity, in which resampled time series with larger scale
predictions is used to make a rough but more accurate trend
prediction, and small scale fine-grained time series prediction
is used to capture more refined seasonal information;

• Some tricks are utilized in the model training, including
a large-stride dataset construction strategy to enrich the
diversity among datasets, and different fusion configurations.

2 PROBLEM FORMULATION
From a machine learning perspective, the wind power forecasting
is to predict the wind power in a future period based on several
historical characteristics of the wind turbine. The historical infor-
mation here mainly includes 10 features, which can be classified
into 3 categories: external environmental information (including
wind speed, wind direction and ambient temperature), wind tur-
bine status (nacelle direction, nacelle internal temperature, blade
1 angle, blade 2 angle and blade 3 angle) and power information
(active power and reactive power).

As for statistical method (statistical method and physical method
are two common methods for wind power forecasting), this is a
typical time series forecasting task. More specifically, it’s a multi-
time series, multi-variate and multi-step prediction problem. The
multi-time series means that there are 134 wind turbines in the
wind farm, and all the wind powers of each turbine need to be
predicted; multivariate means that there are 10 characteristics of
time series for each turbine; and multi-step forecasting means that
it is necessary to forecast the wind turbine power for 288 steps in
the next two days at a certain time.

Mathematically, the above process can be abstractly described
as:

(𝑥𝑡−𝑁+1, 𝑥𝑡−𝑁+2, ..., 𝑥𝑡 ) => (𝑦𝑡+1, 𝑦𝑡+2, ..., 𝑦𝑡+𝑀 )
where 𝑥𝑖 denotes the features at time slot 𝑖 , and 𝑦 𝑗 demotes the
predicted wind power at future time 𝑗 . As discussed before, seq2seq
architecture is a naturally applicable solution, in which an Encoder
is introduced to capture the patterns between historical data and
characterize them as a context vector, followed by a Decoder for
one-by-one output prediction of results based on this context vector
and some other auxiliary features. The process described above can
be further refined as

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑓 (𝑥𝑡−𝑁+1, 𝑥𝑡−𝑁+2, ..., 𝑥𝑡 )

(𝑦𝑡+1, 𝑦𝑡+2, ..., 𝑦𝑡+𝑀 ) = 𝑔(𝑧𝑡+1, 𝑧𝑡+2, ..., 𝑧𝑡+𝑀 |𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
where 𝑧𝑘 denotes the available features for decoder input at time 𝑘 .
Specifically in this competition, with a 10 minutes time interval, a
288 steps forecast horizon is needed i.e.𝑀 = 288, which is a quite
long forecast horizon, and may cause a large cumulative error as
the step length progresses.

In fact, making 288 steps predictions directly is indeed a very
challenging task. On the one hand, longer forecasting steps will
cause more error accumulation, resulting in less accurate prediction
results for the later horizon; on the other hand, wind turbine char-
acteristics (including wind power) are inherently more random and
fluctuating, and thus are not conducive to the model capturing time
series dependencies, as seen from actual exploration results during
the competition. As the number of prediction steps progresses, the
prediction curve is nearly close to a smooth straight line, with very
small fluctuations, implying that the model’s prediction output may
be less informative.

As demonstrated in [2], temporal aggregation makes transfor-
mation from a time series with high frequency to another of lower
frequency, and is an appealing schema to tackle the problem in
this competition. For example, by changing the original temporal
intervals of the historical data from 10 minutes to 1 hour(i.e., cal-
culate the average value of every 6 samples to produce a synthetic
one), the resulting time series has a shorter length with 1/6 times,
and the forecasting horizon changes to 48 steps. By making this
temporal aggregation, it may make it possible for better modelling
of trend patterns, the main idea of [10] also encourage us to seek a
more accurate trend prediction.

Moreover, instead of focusing on a single aggregation level, the
use of multiple levels of aggregation, usually abbreviated as MTA
(multiple temporal aggregation) can not only tackles the need to
select a single aggregation level, but also partly addresses the issue
of model uncertainty, and typically lead to more robust predictions.

As for the fusion of forecast results from different temporal
scales, two strategies are given:

1) Fusion with naive average, i.e., directly averaging the time-
series predictions from different temporal scales, and using the
corresponding mean value as the final forecast output.

2) Calibrate with mean trend. As introducing temporal aggre-
gation for forecasting makes it easier to obtain a more accurate
trend information for large scale temporal forecasting, and thus an
calibration with trend can be applied to the temporal forecasting
results from several different temporal scales. For example, there
are three temporal scales: a daily forecasting version, a hourly fore-
casting version and an original 10 minutes forecasting version, we
will calibrate the mean trend of the hourly predictions by subtracted
the gap when compared with the daily forecasting version, and
then calibrate the 10 minutes predictions with the hourly results,
which will be used as the final prediction. The above processing
can be described as follows:

Δ𝑡𝑟𝑒𝑛𝑑 = 𝑦𝑠 .𝑚𝑒𝑎𝑛() − 𝑦𝑙

𝑦𝑠 = 𝑦𝑠 − Δ𝑡𝑟𝑒𝑛𝑑 .𝑟𝑒𝑝𝑒𝑎𝑡 ()
where 𝑦𝑠 and 𝑦𝑙 denote the predictions of small-scale and large-
scale respectively, and 𝑦𝑠 .𝑚𝑒𝑎𝑛() denotes a temporal aggregation
process, while Δ𝑡𝑟𝑒𝑛𝑑 .𝑟𝑒𝑝𝑒𝑎𝑡 () denotes the opposite process.
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3 METHOD
In order to deal with the multi-turbine power prediction problem,
it is essential to capture the temporal dependence among the time
series and the spatial correlation among different turbines. There-
fore, we propose the network architecture shown in Figure 1, which
mainly consists of three parts, namely 1) mining the spatial corre-
lation among multiple wind turbines, 2) Encoder module, which
processes historical data to extract context information for support-
ing the subsequent Decoder module to do output prediction, and
3) Decoder module, which outputs wind turbine power prediction
results based on context information and other auxiliary features.

Figure 1: Network architecture

3.1 Spatial information fusion
Since there exist some spatial correlations between the historical
data and future prediction results of each turbine and the surround-
ing turbines, the use of historical information from other turbines
is beneficial to improve the power prediction results of the target
turbines. This involves two questions: which turbine features are
fused? And how to fuse these features? For the first question, in-
spired by [3], we employ a K nearest neighbor algorithm and use
the information of the geographic coordinates data to find the near-
est turbines, and incorporate the neighbor turbines’ environmental
features as an augmentation of the target turbine. Specifically, we
mainly set K=8, with a naïve idea to benefit from the eight tur-
bines surround directions. For the latter question, two methods
are considered here, feature concatenation and spatio attention.
Concatenation means that augment target turbines feature by aug-
menting neighbor features as additional features; and in the spatial
attention mechanism, we employ an attention module to fusion
multi turbines feature, aiming at extracting more relevant infor-
mation instead of simply concatenation. By the way, the attention
mechanism here can be either single-headed or multi-headed ver-
sion, as proposed in [7].

3.2 Encoder module
The purpose of the Encoder module is to use the continuous his-
torical features of the wind turbines by exploiting their intrinsic
temporal dependencies and producing a context vector, which will
serve as an important input for the subsequent decoder module. It
is a good choice by utilizing a recurrent neural network unit, such

as LSTM[11] or GRU[12], which is a widely adopted design and has
been shown to be effective in many related studies, and we try it as
well. However, specific to the scenario in this competition, a great
challenge stems from the long forecast horizon - 288 steps; which
always means that a nearly the same length or longer historical data
is needed as the input, to extract an informative enough context
vector for the latter Decoder module. In this case, LSTM and GRU,
although better than RNN, may still decline obviously. TCN [13],
which employed a dilated convolution, indicates that convolutional
architectures can outperform recurrent networks on tasks, and pro-
vides a new choice for sequence modeling. Therefore, we also try
to use the TCN module as an optional module of Encoder.

In mathematical form, when using LSTM or GRU as the main
backbone of Encoder, the hidden vector at the last moment can be
used as the context vector, which will act as an input of decoder
module; when choosing TCN module, which has the same output
length as its input, we simply treat the last-moment output as the
context information, i.e.,

𝑦1, 𝑦1, ..., ˆ𝑦𝑀 = 𝑇𝐶𝑁 (𝑥1, 𝑥2, ..., 𝑥𝑀 )
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = ˆ𝑦𝑀

It is worth to introduce an MLP network between Encoder and
Decoder in order to coordinate the dimensionalities between them,
and further enhance the nonlinear capacity of the model as well.

3.3 Decoder module
The Decoder module receives a context vector as the initial hidden
and some other features as input for each moment, and introduce
new hidden vectors to help make the final prediction. The GRU
module would be introduced to accomplish this task.

To enhance the final prediction accuracy, we make some other
designs described as follows:

1) To make fully use of the output vectors of the Encoder module,
specifically, a temporal attentionmechanism is configured to exploit
correlations between Encoder input and the decoder hidden vector.
Mathematically, it can be described as follows:

ℎ̂ 𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ 𝑗 , 𝑜𝑢𝑡𝑝𝑢𝑡𝑠, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠)
Where ℎ𝑖 is hidden of decoder at time 𝑡 , and 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 are from the
encoder of all time slots.

2) What’s more, since the context vector keeps the temporal
dependence of all the historical data, highly use should be consid-
ered to improve the final prediction accuracy. And we treat it as an
augmentation input of Decoder and the final forecasting module
respectively, i.e.,

3.4 Model training
In this section, some details during the model training are described.

Dataset constructing. As to construct a 3-dimensional tensor
dataset from a sequence of consecutive time series that can be used
as input to the network architecture, like [𝑏𝑎𝑡𝑐ℎ, 𝑠𝑒𝑞𝑙𝑒𝑛, 𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒],
it is a common practice to intercept a segment of the sequence as a
sample by means of a sliding window, and then sliding one step to
intercept another sample. It often works well, but not always the
best. In order to obtain a larger diversity, we generate samples from
the original time series with an bigger stride as shown in Figure
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2. Following this approach, say 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑘 , 𝑘 completely different
datasets can be constructed, and resulting in k models with different
performance. By fusing the prediction results of the k models, more
accurate final prediction results can be gotten.

Figure 2: Constructing dataset with stride=k

Model learning. In the model training, we adopt a masked loss
function to ignore the impact of irregular data, with an optional
lasso regularization of the networks, and it can be described as
follows:

𝑙𝑜𝑠𝑠 =
1
134

∑134
𝑖=1

∑288
𝑗=1 | |𝑃𝑎𝑡𝑣𝑖 𝑗 − 𝑃𝑎𝑡𝑣𝑖 𝑗 | |𝑟 + 𝜆 | |𝑤 | |2

where | | · | |𝑟 means that we only consider the differences between
predictedwind power referencedwith regular real data, and | |𝑤 | |2 is
the regularization of the final output network to prevent overfitting,
with 𝜆 actting as the regularisation strength.

Model ensemble. Except the above multi-model training process,
we resort to some other fusion strategies. Specifically:

• Ensemble with different network configurations, e.g., spatial
information fusion with concat or spatio attention; Encoder
module with TCN or GRU, Decoder module with or without
context vector involved in predicting the output registry.
Different network configurations may be able to learn dif-
ferent patterns among the data and thus capture different
spatio-temporal information.

• Ensemble with different machine learning methods, for ex-
ample, we have tried to use random forest and lightgbm[14]
to make an hourly prediction, and achieved slightly improve-
ments in some cases.

4 EXPERIMENTAL RESULTS
In this section, we will illustrate some experimental results based
on the competition dataset and draw some meaningful analytical
conclusions.

4.1 Performance among different modules
In order to analyze the effectiveness of the network architecture
employed in our method, model performance with different config-
urations are first compared. As described in the section 3.1-3.3, the
configuration of this network architecture depends mainly on the
choice of three parts: how spatial information is fused (concat or
with spatio attention, abbreviation as CAT and SA respectively), the
choice of Encoder module (LSTM/GRU/TCN, since GRU is a varia-
tion of LSTM network, which has less parameters and nearly the
same principles, we only take GRU for comparison), the Decoder
module configuration (whether to introduce the temporal attention

mechanism, and whether to augment the context vector as a part of
input for GRU module in the Decoder or the final estimating). Table
1 lists some scores of different model versions over the tested time
series of 15 days (Days between 170 and 184) and metrics with toy
test data, 𝐶𝐴𝑇𝑛 means concat the neighboring n turbines features,
SA and TA are short for Spatio Attention and Temporal Attention,
respectively.

As the results showed in Table 1, the wind power forecasting
accuracy can be improved by adding a certain number of nearest
neighbor turbines’ features (model 1 vs model 2 and model 3), and
the introduction of spatial attention mechanism behaves slightly
better than the simple concat strategy. And the choice of TCN mod-
ule for Encoder not always introduce benefit, but may have an
average lower error. Finally, for the Decoder module, the temporal
attention mechanism does not always improve the model perfor-
mance, but may provide a diversity when fusion multi models’
prediction results, which will be showed in the section 4.3.

4.2 Predictions with different temporal scales
In this part, we compare the prediction results under different
temporal scales to analyze whether the proposed multi-scale fusion
method can help improve the prediction performance. To benefit a
potential diversity, we choose lightgbm and random foreset to make
an hourly prediction, which is proved effective in both offline test
and online submission. Taking the prediction results of TurbID=66
for days between 221 and 222 as an example, the corresponding
prediction results are shown in Figure 2.

Figure 3: Predictions with different temporal scale

It is demonstrated that, as a shorter time-series prediction hori-
zon is required when processed with temporal aggregation, the
predictions behave coarse but maintain more accurate trend in-
formation. It is worth to be declared that, as showed in Figure 3,
the accuracy of predictions declines dramatically as the forecast
horizon goes, and it is wise to only reserve a front part of the pre-
dictions to participate in the fusion, i.e., discard the coarse latter
prediction results, which may worsen the overall performance.

4.3 Model fusion results
Following the above experiments, the final prediction results by
different model combinations are illustrated. Table 2 gives some of
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Table 1: Scores with different model configurations

Model ID Spatio fusion Encoder Decoder Score on tested 15 days Score on toy test data
TA Aug input Aug output

1 None GRU False False False 42.950 47.496
2 CAT 4 GRU False False False 42.082 46.724
3 CAT 8 GRU False False False 42.011 47.762
4 SA 8 GRU False False False 43.913 42.020
5 SA 8 TCN False False False 44.224 42.288
6 SA 8 TCN True False False 43.455 43.735
7 SA 8 TCN False False True 43.223 43.013
8 SA 8 TCN False True True 43.567 46.220

Figure 4: R2 score of different forecast horizon

the combinations on toy test data, as well as part of known results
with the online stage 3 submission test.

Table 2: Model fusion results

Models Score on toy Score in Stage 3
Model 4 & 5 42.024

Model 4 & 5 & 8 42.008 45.273
Model 4 & 5 & 8 & hourly 42.936 *45.237
*: the best model combination in stage 3, where hourly means

predicted with a temporal scale of 1 hour.

From Table 2, we demonstrate that fusion multi models’ predic-
tion with different temporal scale may provide more accurate and
robust results, even not always.

5 CONCLUSION
In this paper, we propose a multi-scale fusion method for wind
power forecasting with spatiotemporal attention networks. We
employ a seq2seqmodel to capture the temporal relevance, in which
TCN module is optionally configured to extract more effective long-
range dependency information, and neighbor turbines’ features are
argumentd with naïve concat or spatio attention strategies. What’s
more, to counteract the volatility and uncertainty that exist in multi-
step forecasting of wind power, we also introduce the temporal
aggregationmechanism to perform forecasting with different scales,

and enhance the model performance slightly. Further improvement
in prediction can be achieved by simply averaging or performing
mean correction, which is analyzed with numerical results.

For future work, we would investigate our approach with vari-
able temporal scale, and try to find an optimal temporal aggregation
scale to make a better balance between coarse forecasting horizon
and valuable trend information.
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